New Year Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Newly Released Amazon Web Services MLS-C01 Exam PDF

Page: 8 / 23
Total 307 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 29

An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.

The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.

Which solution will enable the company to achieve its goal with the LEAST operational overhead?

Options:

A.

Create an Amazon SageMaker notebook instance for pulling all the models from Amazon S3 using the boto3 library. Remove the existing instances and use the notebook to perform a SageMaker batch transform for performing inferences offline for all the possible users in all the cities. Store the results in different files in Amazon S3. Point the web client to the files.

B.

Prepare an Amazon SageMaker Docker container based on the open-source multi-model server. Remove the existing instances and create a multi-model endpoint in SageMaker instead, pointing to the S3 bucket containing all the models Invoke the endpoint from the web client at runtime, specifying the TargetModel parameter according to the city of each request.

C.

Keep only a single EC2 instance for hosting all the models. Install a model server in the instance and load each model by pulling it from Amazon S3. Integrate the instance with the web client using Amazon API Gateway for responding to the requests in real time, specifying the target resource according to the city of each request.

D.

Prepare a Docker container based on the prebuilt images in Amazon SageMaker. Replace the existing instances with separate SageMaker endpoints. one for each city where the company operates. Invoke the endpoints from the web client, specifying the URL and EndpomtName parameter according to the city of each request.

Question 30

A business to business (B2B) ecommerce company wants to develop a fair and equitable risk mitigation strategy to reject potentially fraudulent transactions. The company wants to reject fraudulent transactions despite the possibility of losing some profitable transactions or customers.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use Amazon SageMaker to approve transactions only for products the company has sold in the past.

B.

Use Amazon SageMaker to train a custom fraud detection model based on customer data.

C.

Use the Amazon Fraud Detector prediction API to approve or deny any activities that Fraud Detector identifies as fraudulent.

D.

Use the Amazon Fraud Detector prediction API to identify potentially fraudulent activities so the company can review the activities and reject fraudulent transactions.

Question 31

A manufacturing company wants to use machine learning (ML) to automate quality control in its facilities. The facilities are in remote locations and have limited internet connectivity. The company has 20 ТВ of training data that consists of labeled images of defective product parts. The training data is in the corporate on-premises data center.

The company will use this data to train a model for real-time defect detection in new parts as the parts move on a conveyor belt in the facilities. The company needs a solution that minimizes costs for compute infrastructure and that maximizes the scalability of resources for training. The solution also must facilitate the company’s use of an ML model in the low-connectivity environments.

Which solution will meet these requirements?

Options:

A.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Deploy the model on a SageMaker hosting services endpoint.

B.

Train and evaluate the model on premises. Upload the model to an Amazon S3 bucket. Deploy the model on an Amazon SageMaker hosting services endpoint.

C.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

D.

Train the model on premises. Upload the model to an Amazon S3 bucket. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

Question 32

A company wants to predict the sale prices of houses based on available historical sales data. The target

variable in the company’s dataset is the sale price. The features include parameters such as the lot size, living

area measurements, non-living area measurements, number of bedrooms, number of bathrooms, year built,

and postal code. The company wants to use multi-variable linear regression to predict house sale prices.

Which step should a machine learning specialist take to remove features that are irrelevant for the analysis

and reduce the model’s complexity?

Options:

A.

Plot a histogram of the features and compute their standard deviation. Remove features with high variance.

B.

Plot a histogram of the features and compute their standard deviation. Remove features with low variance.

C.

Build a heatmap showing the correlation of the dataset against itself. Remove features with low mutual correlation scores.

D.

Run a correlation check of all features against the target variable. Remove features with low target variable correlation scores.

Page: 8 / 23
Total 307 questions