A Machine Learning Specialist is working with multiple data sources containing billions of records that need to be joined. What feature engineering and model development approach should the Specialist take with a dataset this large?
A machine learning (ML) specialist is building a credit score model for a financial institution. The ML specialist has collected data for the previous 3 years of transactions and third-party metadata that is related to the transactions.
After the ML specialist builds the initial model, the ML specialist discovers that the model has low accuracy for both the training data and the test data. The ML specialist needs to improve the accuracy of the model.
Which solutions will meet this requirement? (Select TWO.)
A Machine Learning Specialist is assigned to a Fraud Detection team and must tune an XGBoost model, which is working appropriately for test data. However, with unknown data, it is not working as expected. The existing parameters are provided as follows.
Which parameter tuning guidelines should the Specialist follow to avoid overfitting?
A company's machine learning (ML) specialist is building a computer vision model to classify 10 different traffic signs. The company has stored 100 images of each class in Amazon S3, and the company has another 10.000 unlabeled images. All the images come from dash cameras and are a size of 224 pixels * 224 pixels. After several training runs, the model is overfitting on the training data.
Which actions should the ML specialist take to address this problem? (Select TWO.)