New Year Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

MLS-C01 Questions Bank

Page: 19 / 23
Total 307 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 73

During mini-batch training of a neural network for a classification problem, a Data Scientist notices that training accuracy oscillates What is the MOST likely cause of this issue?

Options:

A.

The class distribution in the dataset is imbalanced

B.

Dataset shuffling is disabled

C.

The batch size is too big

D.

The learning rate is very high

Question 74

A Machine Learning Specialist receives customer data for an online shopping website. The data includes demographics, past visits, and locality information. The Specialist must develop a machine learning approach to identify the customer shopping patterns, preferences and trends to enhance the website for better service and smart recommendations.

Which solution should the Specialist recommend?

Options:

A.

Latent Dirichlet Allocation (LDA) for the given collection of discrete data to identify patterns in the customer database.

B.

A neural network with a minimum of three layers and random initial weights to identify patterns in the customer database

C.

Collaborative filtering based on user interactions and correlations to identify patterns in the customer database

D.

Random Cut Forest (RCF) over random subsamples to identify patterns in the customer database

Question 75

When submitting Amazon SageMaker training jobs using one of the built-in algorithms, which common parameters MUST be specified? (Select THREE.)

Options:

A.

The training channel identifying the location of training data on an Amazon S3 bucket.

B.

The validation channel identifying the location of validation data on an Amazon S3 bucket.

C.

The 1AM role that Amazon SageMaker can assume to perform tasks on behalf of the users.

D.

Hyperparameters in a JSON array as documented for the algorithm used.

E.

The Amazon EC2 instance class specifying whether training will be run using CPU or GPU.

F.

The output path specifying where on an Amazon S3 bucket the trained model will persist.

Question 76

A Machine Learning Specialist is using Amazon Sage Maker to host a model for a highly available customer-facing application.

The Specialist has trained a new version of the model, validated it with historical data, and now wants to deploy it to production To limit any risk of a negative customer experience, the Specialist wants to be able to monitor the model and roll it back, if needed

What is the SIMPLEST approach with the LEAST risk to deploy the model and roll it back, if needed?

Options:

A.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by updating the client configuration. Revert traffic to the last version if the model does not perform as expected.

B.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by using a load balancer Revert traffic to the last version if the model does not perform as expected.

C.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 5% of the traffic to the new variant. Revert traffic to the last version by resetting the weights if the model does not perform as expected.

D.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 100% of the traffic to the new variant Revert traffic to the last version by resetting the weights if the model does not perform as expected.

Page: 19 / 23
Total 307 questions