Amazon Web Services Related Exams
MLS-C01 Exam
The Amazon Web Services MLS-C01 exam is ideal for individuals with at least two years of hands-on experience developing, architecting, and running machine learning (ML) or deep learning (DL) workloads on the AWS Cloud. It caters to professionals like:
The Amazon Web Services MLS-C01 exam delves into various aspects of building, training, deploying, and managing ML workloads on AWS. Key areas include:
Here's a comparison between the Amazon Web Services Certified Machine Learning - Specialty (MLS-C01) Exam and the Amazon Web Services Certified Alexa Skill Builder - Specialty (AXS-C01) Exam:
A data scientist stores financial datasets in Amazon S3. The data scientist uses Amazon Athena to query the datasets by using SQL.
The data scientist uses Amazon SageMaker to deploy a machine learning (ML) model. The data scientist wants to obtain inferences from the model at the SageMaker endpoint However, when the data …. ntist attempts to invoke the SageMaker endpoint, the data scientist receives SOL statement failures The data scientist's 1AM user is currently unable to invoke the SageMaker endpoint
Which combination of actions will give the data scientist's 1AM user the ability to invoke the SageMaker endpoint? (Select THREE.)
A Machine Learning team runs its own training algorithm on Amazon SageMaker. The training algorithm
requires external assets. The team needs to submit both its own algorithm code and algorithm-specific
parameters to Amazon SageMaker.
What combination of services should the team use to build a custom algorithm in Amazon SageMaker?
(Choose two.)
An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.
The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.
Which solution will enable the company to achieve its goal with the LEAST operational overhead?