Amazon Web Services Related Exams
MLS-C01 Exam
The Amazon Web Services MLS-C01 exam is ideal for individuals with at least two years of hands-on experience developing, architecting, and running machine learning (ML) or deep learning (DL) workloads on the AWS Cloud. It caters to professionals like:
The Amazon Web Services MLS-C01 exam delves into various aspects of building, training, deploying, and managing ML workloads on AWS. Key areas include:
Here's a comparison between the Amazon Web Services Certified Machine Learning - Specialty (MLS-C01) Exam and the Amazon Web Services Certified Alexa Skill Builder - Specialty (AXS-C01) Exam:
A company that promotes healthy sleep patterns by providing cloud-connected devices currently hosts a sleep tracking application on AWS. The application collects device usage information from device users. The company's Data Science team is building a machine learning model to predict if and when a user will stop utilizing the company's devices. Predictions from this model are used by a downstream application that determines the best approach for contacting users.
The Data Science team is building multiple versions of the machine learning model to evaluate each version against the company’s business goals. To measure long-term effectiveness, the team wants to run multiple versions of the model in parallel for long periods of time, with the ability to control the portion of inferences served by the models.
Which solution satisfies these requirements with MINIMAL effort?
A finance company has collected stock return data for 5.000 publicly traded companies. A financial analyst has a dataset that contains 2.000 attributes for each company. The financial analyst wants to use Amazon SageMaker to identify the top 15 attributes that are most valuable to predict future stock returns.
Which solution will meet these requirements with the LEAST operational overhead?
A company supplies wholesale clothing to thousands of retail stores. A data scientist must create a model that predicts the daily sales volume for each item for each store. The data scientist discovers that more than half of the stores have been in business for less than 6 months. Sales data is highly consistent from week to week. Daily data from the database has been aggregated weekly, and weeks with no sales are omitted from the current dataset. Five years (100 MB) of sales data is available in Amazon S3.
Which factors will adversely impact the performance of the forecast model to be developed, and which actions should the data scientist take to mitigate them? (Choose two.)