Winter Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

MLS-C01 Exam Dumps : AWS Certified Machine Learning - Specialty

PDF
MLS-C01 pdf
 Real Exam Questions and Answer
 Last Update: Feb 5, 2025
 Question and Answers: 307 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$29.75  $84.99
MLS-C01 exam
PDF + Testing Engine
MLS-C01 PDF + engine
 Both PDF & Practice Software
 Last Update: Feb 5, 2025
 Question and Answers: 307
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$47.25  $134.99
Testing Engine
MLS-C01 Engine
 Desktop Based Application
 Last Update: Feb 5, 2025
 Question and Answers: 307
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$35  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Guadeloupe certstopics Guadeloupe
Ricardo
Dec 5, 2024
The AWS MLS-C01 Exam tips provided by certstopics.com were invaluable. They guided me through the preparation process.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A Machine Learning Specialist wants to bring a custom algorithm to Amazon SageMaker. The Specialist

implements the algorithm in a Docker container supported by Amazon SageMaker.

How should the Specialist package the Docker container so that Amazon SageMaker can launch the training

correctly?

Options:

A.

Modify the bash_profile file in the container and add a bash command to start the training program

B.

Use CMD config in the Dockerfile to add the training program as a CMD of the image

C.

Configure the training program as an ENTRYPOINT named train

D.

Copy the training program to directory /opt/ml/train

Buy Now
Question 2

A company is building a predictive maintenance model for its warehouse equipment. The model must predict the probability of failure of all machines in the warehouse. The company has collected 10.000 event samples within 3 months. The event samples include 100 failure cases that are evenly distributed across 50 different machine types.

How should the company prepare the data for the model to improve the model's accuracy?

Options:

A.

Adjust the class weight to account for each machine type.

B.

Oversample the failure cases by using the Synthetic Minority Oversampling Technique (SMOTE).

C.

Undersample the non-failure events. Stratify the non-failure events by machine type.

D.

Undersample the non-failure events by using the Synthetic Minority Oversampling Technique (SMOTE).

Question 3

An ecommerce company has used Amazon SageMaker to deploy a factorization machines (FM) model to suggest products for customers. The company's data science team has developed two new models by using the TensorFlow and PyTorch deep learning frameworks. The company needs to use A/B testing to evaluate the new models against the deployed model.

...required A/B testing setup is as follows:

• Send 70% of traffic to the FM model, 15% of traffic to the TensorFlow model, and 15% of traffic to the Py Torch model.

• For customers who are from Europe, send all traffic to the TensorFlow model

..sh architecture can the company use to implement the required A/B testing setup?

Options:

A.

Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create an Application Load Balancer Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.

B.

Create two production variants for the TensorFlow and PyTorch models. Create an auto scaling policy and configure the desired A/B weights to direct traffic to each production variant Update the existing SageMaker endpoint with the auto scaling policy. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.

C.

Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create a Network Load Balancer. Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.

D.

Create two production variants for the TensorFlow and PyTorch models. Specify the weight for each production variant in the SageMaker endpoint configuration. Update the existing SageMaker endpoint with the new configuration. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.