A retail chain has been ingesting purchasing records from its network of 20,000 stores to Amazon S3 using Amazon Kinesis Data Firehose To support training an improved machine learning model, training records will require new but simple transformations, and some attributes will be combined The model needs lo be retrained daily
Given the large number of stores and the legacy data ingestion, which change will require the LEAST amount of development effort?
A large mobile network operating company is building a machine learning model to predict customers who are likely to unsubscribe from the service. The company plans to offer an incentive for these customers as the cost of churn is far greater than the cost of the incentive.
The model produces the following confusion matrix after evaluating on a test dataset of 100 customers:
Based on the model evaluation results, why is this a viable model for production?
A data scientist wants to use Amazon Forecast to build a forecasting model for inventory demand for a retail company. The company has provided a dataset of historic inventory demand for its products as a .csv file stored in an Amazon S3 bucket. The table below shows a sample of the dataset.
How should the data scientist transform the data?
A company wants to forecast the daily price of newly launched products based on 3 years of data for older product prices, sales, and rebates. The time-series data has irregular timestamps and is missing some values.
Data scientist must build a dataset to replace the missing values. The data scientist needs a solution that resamptes the data daily and exports the data for further modeling.
Which solution will meet these requirements with the LEAST implementation effort?