A retail company is selling products through a global online marketplace. The company wants to use machine learning (ML) to analyze customer feedback and identify specific areas for improvement. A developer has built a tool that collects customer reviews from the online marketplace and stores them in an Amazon S3 bucket. This process yields a dataset of 40 reviews. A data scientist building the ML models must identify additional sources of data to increase the size of the dataset.
Which data sources should the data scientist use to augment the dataset of reviews? (Choose three.)
A company wants to predict the sale prices of houses based on available historical sales data. The target
variable in the company’s dataset is the sale price. The features include parameters such as the lot size, living
area measurements, non-living area measurements, number of bedrooms, number of bathrooms, year built,
and postal code. The company wants to use multi-variable linear regression to predict house sale prices.
Which step should a machine learning specialist take to remove features that are irrelevant for the analysis
and reduce the model’s complexity?
A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.
Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)
A library is developing an automatic book-borrowing system that uses Amazon Rekognition. Images of library members’ faces are stored in an Amazon S3 bucket. When members borrow books, the Amazon Rekognition CompareFaces API operation compares real faces against the stored faces in Amazon S3.
The library needs to improve security by making sure that images are encrypted at rest. Also, when the images are used with Amazon Rekognition. they need to be encrypted in transit. The library also must ensure that the images are not used to improve Amazon Rekognition as a service.
How should a machine learning specialist architect the solution to satisfy these requirements?