Summer Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Amazon Web Services MLS-C01 Online Access

Page: 13 / 23
Total 322 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 49

A Machine Learning Specialist is given a structured dataset on the shopping habits of a company’s customer

base. The dataset contains thousands of columns of data and hundreds of numerical columns for each

customer. The Specialist wants to identify whether there are natural groupings for these columns across all

customers and visualize the results as quickly as possible.

What approach should the Specialist take to accomplish these tasks?

Options:

A.

Embed the numerical features using the t-distributed stochastic neighbor embedding (t-SNE) algorithm andcreate a scatter plot.

B.

Run k-means using the Euclidean distance measure for different values of k and create an elbow plot.

C.

Embed the numerical features using the t-distributed stochastic neighbor embedding (t-SNE) algorithm andcreate a line graph.

D.

Run k-means using the Euclidean distance measure for different values of k and create box plots for each numerical column within each cluster.

Question 50

A large JSON dataset for a project has been uploaded to a private Amazon S3 bucket The Machine Learning Specialist wants to securely access and explore the data from an Amazon SageMaker notebook instance A new VPC was created and assigned to the Specialist

How can the privacy and integrity of the data stored in Amazon S3 be maintained while granting access to the Specialist for analysis?

Options:

A.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled Use an S3 ACL to open read privileges to the everyone group

B.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Copy the JSON dataset from Amazon S3 into the ML storage volume on the SageMaker notebook instance and work against the local dataset

C.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Define a custom S3 bucket policy to only allow requests from your VPC to access the S3 bucket

D.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled. Generate an S3 pre-signed URL for access to data in the bucket

Question 51

A manufacturing company has a production line with sensors that collect hundreds of quality metrics. The company has stored sensor data and manual inspection results in a data lake for several months. To automate quality control, the machine learning team must build an automated mechanism that determines whether the produced goods are good quality, replacement market quality, or scrap quality based on the manual inspection results.

Which modeling approach will deliver the MOST accurate prediction of product quality?

Options:

A.

Amazon SageMaker DeepAR forecasting algorithm

B.

Amazon SageMaker XGBoost algorithm

C.

Amazon SageMaker Latent Dirichlet Allocation (LDA) algorithm

D.

A convolutional neural network (CNN) and ResNet

Question 52

A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95.

Which model describes the underlying data in this situation?

Options:

A.

A naive Bayesian model, since the features are all conditionally independent.

B.

A full Bayesian network, since the features are all conditionally independent.

C.

A naive Bayesian model, since some of the features are statistically dependent.

D.

A full Bayesian network, since some of the features are statistically dependent.

Page: 13 / 23
Total 322 questions