New Year Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services MLS-C01 Online Access

Page: 13 / 23
Total 307 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 49

A data scientist uses Amazon SageMaker Data Wrangler to define and perform transformations and feature engineering on historical data. The data scientist saves the transformations to SageMaker Feature Store.

The historical data is periodically uploaded to an Amazon S3 bucket. The data scientist needs to transform the new historic data and add it to the online feature store The data scientist needs to prepare the .....historic data for training and inference by using native integrations.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use AWS Lambda to run a predefined SageMaker pipeline to perform the transformations on each new dataset that arrives in the S3 bucket.

B.

Run an AWS Step Functions step and a predefined SageMaker pipeline to perform the transformations on each new dalaset that arrives in the S3 bucket

C.

Use Apache Airflow to orchestrate a set of predefined transformations on each new dataset that arrives in the S3 bucket.

D.

Configure Amazon EventBridge to run a predefined SageMaker pipeline to perform the transformations when a new data is detected in the S3 bucket.

Question 50

A company is using Amazon Textract to extract textual data from thousands of scanned text-heavy legal documents daily. The company uses this information to process loan applications automatically. Some of the documents fail business validation and are returned to human reviewers, who investigate the errors. This activity increases the time to process the loan applications.

What should the company do to reduce the processing time of loan applications?

Options:

A.

Configure Amazon Textract to route low-confidence predictions to Amazon SageMaker Ground Truth. Perform a manual review on those words before performing a business validation.

B.

Use an Amazon Textract synchronous operation instead of an asynchronous operation.

C.

Configure Amazon Textract to route low-confidence predictions to Amazon Augmented AI (Amazon A2I). Perform a manual review on those words before performing a business validation.

D.

Use Amazon Rekognition's feature to detect text in an image to extract the data from scanned images. Use this information to process the loan applications.

Question 51

A real estate company wants to create a machine learning model for predicting housing prices based on a

historical dataset. The dataset contains 32 features.

Which model will meet the business requirement?

Options:

A.

Logistic regression

B.

Linear regression

C.

K-means

D.

Principal component analysis (PCA)

Question 52

A machine learning (ML) specialist is using the Amazon SageMaker DeepAR forecasting algorithm to train a model on CPU-based Amazon EC2 On-Demand instances. The model currently takes multiple hours to train. The ML specialist wants to decrease the training time of the model.

Which approaches will meet this requirement7 (SELECT TWO )

Options:

A.

Replace On-Demand Instances with Spot Instances

B.

Configure model auto scaling dynamically to adjust the number of instances automatically.

C.

Replace CPU-based EC2 instances with GPU-based EC2 instances.

D.

Use multiple training instances.

E.

Use a pre-trained version of the model. Run incremental training.

Page: 13 / 23
Total 307 questions