To identify the reason why the Step Functions state machine is not able to run the EMR jobs, the company should take the following steps:
Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. The state machine code should have an IAM role that allows it to invoke the EMR APIs, such as RunJobFlow, AddJobFlowSteps, and DescribeStep. The state machine code should also have IAM permissions to access the Amazon S3 buckets that the EMR jobs use as input and output locations. The company can use Access Analyzer for S3 to check the access policies and permissions of the S3 buckets12. Therefore, option B is correct.
Query the flow logs for the VPC. The flow logs can provide information about the network traffic to and from the EMR cluster that is launched in the VPC. The company can use the flow logs to determine whether the traffic that originates from the EMR cluster can successfully reach the data providers, such as Amazon RDS, Amazon Redshift, or other external sources. The company can also determine whether any security group that might be attached to the EMR cluster allows connections to the data source servers on the informed ports. The company can use Amazon VPC Flow Logs or Amazon CloudWatch Logs Insights to query the flow logs3 . Therefore, option D is correct.
Option A is incorrect because it suggests using AWS CloudFormation to automate the Step Functions state machine deployment. While this is a good practice to ensure consistency and repeatability of the deployment, it does not help to identify the reason why the state machine is not able to run the EMR jobs. Moreover, creating a step to pause the state machine during the EMR jobs that fail and wait for a human user to send approval through an email message is not a reliable way to troubleshoot the issue. The company should use the Step Functions console or API to monitor the execution history and status of the state machine, and use Amazon CloudWatch to view the logs and metrics of the EMR jobs .
Option C is incorrect because it suggests changing the AWS Step Functions state machine code to use Amazon EMR on EKS. Amazon EMR on EKS is a service that allows you to run EMR jobs on Amazon Elastic Kubernetes Service (Amazon EKS) clusters. While this service has some benefits, such as lower cost and faster execution time, it does not support all the features and integrations that EMR on EC2 does, such as EMR Notebooks, EMR Studio, and EMRFS. Therefore, changing the state machine code to use EMR on EKS may not be compatible with the existing data pipeline and may introduce new issues.
Option E is incorrect because it suggests checking the retry scenarios that the company configured for the EMR jobs. While this is a good practice to handle transient failures and errors, it does not help to identify the root cause of why the state machine is not able to run the EMR jobs. Moreover, increasing the number of seconds in the interval between each EMR task may not improve the success rate of the jobs, and may increase the execution time and cost of the state machine. Configuring an Amazon SNS topic to store the error messages may help to notify the company of any failures, but it does not provide enough information to troubleshoot the issue.
References:
1: Manage an Amazon EMR Job - AWS Step Functions
2: Access Analyzer for S3 - Amazon Simple Storage Service
3: Working with Amazon EMR and VPC Flow Logs - Amazon EMR
[4]: Analyzing VPC Flow Logs with Amazon CloudWatch Logs Insights - Amazon Virtual Private Cloud
[5]: Monitor AWS Step Functions - AWS Step Functions
[6]: Monitor Amazon EMR clusters - Amazon EMR
[7]: Amazon EMR on Amazon EKS - Amazon EMR