Weekend Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Certification:
Questions:
152
Last Updated:
Mar 9, 2025
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Associate Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A retail company is expanding its operations globally. The company needs to use Amazon QuickSight to accurately calculate currency exchange rates for financial reports. The company has an existing dashboard that includes a visual that is based on an analysis of a dataset that contains global currency values and exchange rates.

A data engineer needs to ensure that exchange rates are calculated with a precision of four decimal places. The calculations must be precomputed. The data engineer must materialize results in QuickSight super-fast, parallel, in-memory calculation engine (SPICE).

Which solution will meet these requirements?

Options:

A.

Define and create the calculated field in the dataset.

B.

Define and create the calculated field in the analysis.

C.

Define and create the calculated field in the visual.

D.

Define and create the calculated field in the dashboard.

Buy Now
Question 2

A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.

The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Step Functions to pause the Redshift cluster when the analytics processes are complete and to resume the cluster to run new processes every month.

B.

Use Amazon Redshift Serverless to automatically process the analytics workload.

C.

Use the AWS CLI to automatically process the analytics workload.

D.

Use AWS CloudFormation templates to automatically process the analytics workload.

Question 3

A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.

The data engineer's original query is as follows:

SELECT product_name, sum(sales_amount)

FROM sales_data

WHERE year = 2023

GROUP BY product_name

How should the data engineer modify the Athena query to meet these requirements?

Options:

A.

Replace sum(sales amount) with count(*J for the aggregation.

B.

Change WHERE year = 2023 to WHERE extractlyear FROM sales data) = 2023.

C.

Add HAVING sumfsales amount) > 0 after the GROUP BY clause.

D.

Remove the GROUP BY clause