Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
190
Last Updated:
Nov 6, 2025
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A company stores data in a data lake that is in Amazon S3. Some data that the company stores in the data lake contains personally identifiable information (PII). Multiple user groups need to access the raw data. The company must ensure that user groups can access only the PII that they require.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use Amazon Athena to query the data. Set up AWS Lake Formation and create data filters to establish levels of access for the company's IAM roles. Assign each user to the IAM role that matches the user's PII access requirements.

B.

Use Amazon QuickSight to access the data. Use column-level security features in QuickSight to limit the PII that users can retrieve from Amazon S3 by using Amazon Athena. Define QuickSight access levels based on the PII access requirements of the users.

C.

Build a custom query builder UI that will run Athena queries in the background to access the data. Create user groups in Amazon Cognito. Assign access levels to the user groups based on the PII access requirements of the users.

D.

Create IAM roles that have different levels of granular access. Assign the IAM roles to IAM user groups. Use an identity-based policy to assign access levels to user groups at the column level.

Buy Now
Question 2

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Question 3

A company uses a variety of AWS and third-party data stores. The company wants to consolidate all the data into a central data warehouse to perform analytics. Users need fast response times for analytics queries.

The company uses Amazon QuickSight in direct query mode to visualize the data. Users normally run queries during a few hours each day with unpredictable spikes.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Redshift Serverless to load all the data into Amazon Redshift managed storage (RMS).

B.

Use Amazon Athena to load all the data into Amazon S3 in Apache Parquet format.

C.

Use Amazon Redshift provisioned clusters to load all the data into Amazon Redshift managed storage (RMS).

D.

Use Amazon Aurora PostgreSQL to load all the data into Aurora.