New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
231
Last Updated:
Jan 18, 2026
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.

The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.

A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use native Amazon Redshift, Teradata, and BigQuery connectors to build the pipeline in AWS Glue. Use native AWS Glue transforms to join the data. Run a Merge operation on the data lake Iceberg table.

B.

Use the Amazon Athena federated query connectors for Amazon Redshift, Teradata, and BigQuery to build the pipeline in Athena. Write a SQL query to read from all the data sources, join the data, and run a Merge operation on the data lake Iceberg table.

C.

Use the native Amazon Redshift connector, the Java Database Connectivity (JDBC) connector for Teradata, and the open source Apache Spark BigQuery connector to build the pipeline in Amazon EMR. Write code in PySpark to join the data. Run a Merge operation on the data lake Iceberg table.

D.

Use the native Amazon Redshift, Teradata, and BigQuery connectors in Amazon Appflow to write data to Amazon S3 and AWS Glue Data Catalog. Use Amazon Athena to join the data. Run a Merge operation on the data lake Iceberg table.

Buy Now
Question 2

A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.

The company must ensure that the application performs consistently during peak usage times.

Which solution will meet these requirements in the MOST cost-effective way?

Options:

A.

Increase the provisioned capacity to the maximum capacity that is currently present during peak load times.

B.

Divide the table into two tables. Provision each table with half of the provisioned capacity of the original table. Spread queries evenly across both tables.

C.

Use AWS Application Auto Scaling to schedule higher provisioned capacity for peak usage times. Schedule lower capacity during off-peak times.

D.

Change the capacity mode from provisioned to on-demand. Configure the table to scale up and scale down based on the load on the table.

Question 3

A data engineer maintains custom Python scripts that perform a data formatting process that many AWS Lambda functions use. When the data engineer needs to modify the Python scripts, the data engineer must manually update all the Lambda functions.

The data engineer requires a less manual way to update the Lambda functions.

Which solution will meet this requirement?

Options:

A.

Store a pointer to the custom Python scripts in the execution context object in a shared Amazon S3 bucket.

B.

Package the custom Python scripts into Lambda layers. Apply the Lambda layers to the Lambda functions.

C.

Store a pointer to the custom Python scripts in environment variables in a shared Amazon S3 bucket.

D.

Assign the same alias to each Lambda function. Call reach Lambda function by specifying the function's alias.