Big Cyber Monday Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
218
Last Updated:
Dec 7, 2025
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A data engineer is processing a large amount of log data from web servers. The data is stored in an Amazon S3 bucket. The data engineer uses AWS services to process the data every day. The data engineer needs to extract specific fields from the raw log data and load the data into a data warehouse for analysis.

Options:

A.

Use Amazon EMR to run Apache Hive queries on the raw log files in the S3 bucket to extract the specified fields. Store the output as ORC files in the original S3 bucket.

B.

Use AWS Step Functions to orchestrate a series of AWS Batch jobs to parse the raw log files. Load the specified fields into an Amazon RDS for PostgreSQL database.

C.

Use an AWS Glue crawler to parse the raw log data in the S3 bucket and to generate a schema. Use AWS Glue ETL jobs to extract and transform the data and to load it into Amazon Redshift.

D.

Use AWS Glue DataBrew to run AWS Glue ETL jobs on a schedule to extract the specified fields from the raw log files in the S3 bucket. Load the data into partitioned tables in Amazon Redshift.

Buy Now
Question 2

A company stores employee data in Amazon Redshift A table named Employee uses columns named Region ID, Department ID, and Role ID as a compound sort key. Which queries will MOST increase the speed of a query by using a compound sort key of the table? (Select TWO.)

Options:

A.

Select * from Employee where Region ID='North America';

B.

Select * from Employee where Region ID='North America' and Department ID=20;

C.

Select * from Employee where Department ID=20 and Region ID='North America';

D.

Select " from Employee where Role ID=50;

E.

Select * from Employee where Region ID='North America' and Role ID=50;

Question 3

A company is migrating its database servers from Amazon EC2 instances that run Microsoft SQL Server to Amazon RDS for Microsoft SQL Server DB instances. The company's analytics team must export large data elements every day until the migration is complete. The data elements are the result of SQL joins across multiple tables. The data must be in Apache Parquet format. The analytics team must store the data in Amazon S3.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create an AWS Glue job that selects the data directly from the view and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

B.

Schedule SQL Server Agent to run a daily SQL query that selects the desired data elements from the EC2 instance-based SQL Server databases. Configure the query to direct the output .csv objects to an S3 bucket. Create an S3 event that invokes an AWS Lambda function to transform the output format from .csv to Parquet.

C.

Use a SQL query to create a view in the EC2 instance-based SQL Server databases that contains the required data elements. Create and run an AWS Glue crawler to read the view. Create an AWS Glue job that retrieves the data and transfers the data in Parquet format to an S3 bucket. Schedule the AWS Glue job to run every day.

D.

Create an AWS Lambda function that queries the EC2 instance-based databases by using Java Database Connectivity (JDBC). Configure the Lambda function to retrieve the required data, transform the data into Parquet format, and transfer the data into an S3 bucket. Use Amazon EventBridge to schedule the Lambda function to run every day.