A company ingests data from multiple data sources and stores the data in an Amazon S3 bucket. An AWS Glue extract, transform, and load (ETL) job transforms the data and writes the transformed data to an Amazon S3 based data lake. The company uses Amazon Athena to query the data that is in the data lake.
The company needs to identify matching records even when the records do not have a common unique identifier.
Which solution will meet this requirement?
A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.
The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.
The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.
Which solution will meet these requirements with the LEAST development effort?
A company wants to migrate an application and an on-premises Apache Kafka server to AWS. The application processes incremental updates that an on-premises Oracle database sends to the Kafka server. The company wants to use the replatform migration strategy instead of the refactor strategy.
Which solution will meet these requirements with the LEAST management overhead?
A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.
The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.
Which solution will meet these requirements with the LEAST implementation effort?
A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.
Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.
Which solution will meet this requirement with the LEAST latency?
A data engineer needs to use an Amazon QuickSight dashboard that is based on Amazon Athena queries on data that is stored in an Amazon S3 bucket. When the data engineer connects to the QuickSight dashboard, the data engineer receives an error message that indicates insufficient permissions.
Which factors could cause to the permissions-related errors? (Choose two.)
A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.
Which solution will meet these requirements with the LEAST operational overhead?
A retail company is expanding its operations globally. The company needs to use Amazon QuickSight to accurately calculate currency exchange rates for financial reports. The company has an existing dashboard that includes a visual that is based on an analysis of a dataset that contains global currency values and exchange rates.
A data engineer needs to ensure that exchange rates are calculated with a precision of four decimal places. The calculations must be precomputed. The data engineer must materialize results in QuickSight super-fast, parallel, in-memory calculation engine (SPICE).
Which solution will meet these requirements?
A company stores customer data in an Amazon S3 bucket. Multiple teams in the company want to use the customer data for downstream analysis. The company needs to ensure that the teams do not have access to personally identifiable information (PII) about the customers.
Which solution will meet this requirement with LEAST operational overhead?
A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.
The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.
Which solution will meet these requirements with the LEAST development effort?
A company has a frontend ReactJS website that uses Amazon API Gateway to invoke REST APIs. The APIs perform the functionality of the website. A data engineer needs to write a Python script that can be occasionally invoked through API Gateway. The code must return results to API Gateway.
Which solution will meet these requirements with the LEAST operational overhead?
A company is migrating its database servers from Amazon EC2 instances that run Microsoft SQL Server to Amazon RDS for Microsoft SQL Server DB instances. The company's analytics team must export large data elements every day until the migration is complete. The data elements are the result of SQL joins across multiple tables. The data must be in Apache Parquet format. The analytics team must store the data in Amazon S3.
Which solution will meet these requirements in the MOST operationally efficient way?
A financial services company stores financial data in Amazon Redshift. A data engineer wants to run real-time queries on the financial data to support a web-based trading application. The data engineer wants to run the queries from within the trading application.
Which solution will meet these requirements with the LEAST operational overhead?
A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.
The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.
Which solution will MOST reduce the data processing time?
A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.
A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.
Which solution will meet this requirement?
A data engineer wants to orchestrate a set of extract, transform, and load (ETL) jobs that run on AWS. The ETL jobs contain tasks that must run Apache Spark jobs on Amazon EMR, make API calls to Salesforce, and load data into Amazon Redshift.
The ETL jobs need to handle failures and retries automatically. The data engineer needs to use Python to orchestrate the jobs.
Which service will meet these requirements?
A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.
The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.
Which solution will meet these requirements?
An ecommerce company wants to use AWS to migrate data pipelines from an on-premises environment into the AWS Cloud. The company currently uses a third-party too in the on-premises environment to orchestrate data ingestion processes.
The company wants a migration solution that does not require the company to manage servers. The solution must be able to orchestrate Python and Bash scripts. The solution must not require the company to refactor any code.
Which solution will meet these requirements with the LEAST operational overhead?
A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventorymanagement system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.
Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.
Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)
A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.
The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.
The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.
Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)
A company hosts its applications on Amazon EC2 instances. The company must use SSL/TLS connections that encrypt data in transit to communicate securely with AWS infrastructure that is managed by a customer.
A data engineer needs to implement a solution to simplify the generation, distribution, and rotation of digital certificates. The solution must automatically renew and deploy SSL/TLS certificates.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.
The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.
Which solution will meet these requirements with the LEAST operational overhead?
A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII). The company has an internal analytics application that does not require access to the PII.
To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.
Which solution will meet the requirements with the LEAST operational overhead?
A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.
The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.
Which solution will meet these requirements with the LEAST operational overhead?
A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.
The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.
Which solution will meet these requirements?
A data engineer needs to maintain a central metadata repository that users access through Amazon EMR and Amazon Athena queries. The repository needs to provide the schema and properties of many tables. Some of the metadata is stored in Apache Hive. The data engineer needs to import the metadata from Hive into the central metadata repository.
Which solution will meet these requirements with the LEAST development effort?
A data engineer needs to debug an AWS Glue job that reads from Amazon S3 and writes to Amazon Redshift. The data engineer enabled the bookmark feature for the AWS Glue job. The data engineer has set the maximum concurrency for the AWS Glue job to 1.
The AWS Glue job is successfully writing the output to Amazon Redshift. However, the Amazon S3 files that were loaded during previous runs of the AWS Glue job are being reprocessed by subsequent runs.
What is the likely reason the AWS Glue job is reprocessing the files?
A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.
Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)
A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.
A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.
The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.
Which solution will meet these requirements in the MOST cost-effective way?
A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.
The data engineer's original query is as follows:
SELECT product_name, sum(sales_amount)
FROM sales_data
WHERE year = 2023
GROUP BY product_name
How should the data engineer modify the Athena query to meet these requirements?
A company wants to migrate data from an Amazon RDS for PostgreSQL DB instance in the eu-east-1 Region of an AWS account named Account_A. The company will migrate the data to an Amazon Redshift cluster in the eu-west-1 Region of an AWS account named Account_B.
Which solution will give AWS Database Migration Service (AWS DMS) the ability to replicate data between two data stores?
A company stores petabytes of data in thousands of Amazon S3 buckets in the S3 Standard storage class. The data supports analytics workloads that have unpredictable and variable data access patterns.
The company does not access some data for months. However, the company must be able to retrieve all data within milliseconds. The company needs to optimize S3 storage costs.
Which solution will meet these requirements with the LEAST operational overhead?
A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.
The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.
A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.
Which solution will meet these requirements with the LEAST operational effort?
A company needs a solution to manage costs for an existing Amazon DynamoDB table. The company also needs to control the size of the table. The solution must not disrupt any ongoing read or write operations. The company wants to use a solution that automatically deletes data from the table after 1 month.
Which solution will meet these requirements with the LEAST ongoing maintenance?
A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.
Which solution will run the Glue jobs in the MOST cost-effective way?
A data engineer needs to securely transfer 5 TB of data from an on-premises data center to an Amazon S3 bucket. Approximately 5% of the data changes every day. Updates to the data need to be regularly proliferated to the S3 bucket. The data includes files that are in multiple formats. The data engineer needs to automate the transfer process and must schedule the process to run periodically.
Which AWS service should the data engineer use to transfer the data in the MOST operationally efficient way?
A company is migrating on-premises workloads to AWS. The company wants to reduce overall operational overhead. The company also wants to explore serverless options.
The company's current workloads use Apache Pig, Apache Oozie, Apache Spark, Apache Hbase, and Apache Flink. The on-premises workloads process petabytes of data in seconds. The company must maintain similar or better performance after the migration to AWS.
Which extract, transform, and load (ETL) service will meet these requirements?
A mobile gaming company wants to capture data from its gaming app. The company wants to make the data available to three internal consumers of the data. The data records are approximately 20 KB in size.
The company wants to achieve optimal throughput from each device that runs the gaming app. Additionally, the company wants to develop an application to process data streams. The stream-processing application must have dedicated throughput for each internal consumer.
Which solution will meet these requirements?
A company uses Amazon Redshift as its data warehouse. Data encoding is applied to the existing tables of the data warehouse. A data engineer discovers that the compression encoding applied to some of the tables is not the best fit for the data.
The data engineer needs to improve the data encoding for the tables that have sub-optimal encoding.
Which solution will meet this requirement?
A company is planning to upgrade its Amazon Elastic Block Store (Amazon EBS) General Purpose SSD storage from gp2 to gp3. The company wants to prevent any interruptions in its Amazon EC2 instances that will cause data loss during the migration to the upgraded storage.
Which solution will meet these requirements with the LEAST operational overhead?
A healthcare company uses Amazon Kinesis Data Streams to stream real-time health data from wearable devices, hospital equipment, and patient records.
A data engineer needs to find a solution to process the streaming data. The data engineer needs to store the data in an Amazon Redshift Serverless warehouse. The solution must support near real-time analytics of the streaming data and the previous day's data.
Which solution will meet these requirements with the LEAST operational overhead?
A company stores customer records in Amazon S3. The company must not delete or modify the customer record data for 7 years after each record is created. The root user also must not have the ability to delete or modify the data.
A data engineer wants to use S3 Object Lock to secure the data.
Which solution will meet these requirements?
A data engineer maintains custom Python scripts that perform a data formatting process that many AWS Lambda functions use. When the data engineer needs to modify the Python scripts, the data engineer must manually update all the Lambda functions.
The data engineer requires a less manual way to update the Lambda functions.
Which solution will meet this requirement?