Special Summer Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services ANS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
ANS-C01
Exam Name:
Amazon AWS Certified Advanced Networking - Specialty
Certification:
Questions:
153
Last Updated:
Apr 2, 2025
Exam Status:
Stable
Amazon Web Services ANS-C01

ANS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services ANS-C01 (Amazon AWS Certified Advanced Networking - Specialty) exam? Download the most recent Amazon Web Services ANS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services ANS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services ANS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services ANS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Amazon AWS Certified Advanced Networking - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA ANS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services ANS-C01 practice exam demo.

Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Question 1

A customer has set up multiple VPCs for Dev, Test, Prod, and Management. You need to set up AWS Direct Connect to enable data flow from on-premises to each VPC. The customer has monitoring software running in the Management VPC that collects metrics from the instances in all the other VPCs. Due to budget requirements, data transfer charges should be kept at minimum.

Which design should be recommended?

Options:

A.

Create a total of four private VIFs, one for each VPC owned by the customer, and route traffic between VPCs using the Direct Connect link.

B.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs.

C.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs, enable source/destination NAT in the Management VPC.

D.

Create a total of four private VIFs, and enable VPC peering between all VPCs.

Buy Now
Question 2

A company operates its IT services through a multi-site hybrid infrastructure. The company deploys resources on AWS in the us-east-1 Region and in the eu-west-2 Region. The company also deploys resources in its own data centers that are located in the United States (US) and in the United Kingdom (UK). In both AWS Regions, the company uses a transit gateway to connect 15 VPCs to each other. The company has created a transit gateway peering connection between the two transit gateways. The VPC CIDR blocks do not overlap with each other or with IP addresses used within the data centers. The VPC CIDR prefixes can also be aggregated either on a Regional level or for the company's entire AWS environment.

The data centers are connected to each other by a private WAN connection. IP routing information is exchanged dynamically through Interior BGP (iBGP) sessions. The data centers maintain connectivity to AWS through one AWS Direct Connect connection in the US and one Direct Connect connection in the UK. Each Direct Connect connection is terminated on a Direct Connect gateway and is associated with a local transit gateway through a transit VIF.

Traffic follows the shortest geographical path from source to destination. For example, packets from the UK data center that are targeted to resources in eu-west-2 travel across the local Direct Connect connection. In cases of cross-Region data transfers, such as from the UK data center to VPCs in us-east-1, the private WAN connection must be used to minimize costs on AWS. A network engineer has configured each transit gateway association on the Direct Connect gateway to advertise VPC-specific CIDR IP prefixes only from the local Region. The routes toward the other Region must be learned through BGP from the routers in the other data center in the original, non-aggregated form.

The company recently experienced a problem with cross-Region data transfers because of issues with its private WAN connection. The network engineer needs to modify the routing setup to prevent similar interruptions in the future. The solution cannot modify the original traffic routing goal when the network is operating normally.

Which modifications will meet these requirements? (Choose two.)

Options:

A.

Remove all the VPC CIDR prefixes from the list of subnets advertised through the local Direct Connect connection. Add the company's entire AWS environment aggregate route to the list of subnets advertised through the local Direct Connect connection.

B.

Add the CIDR prefixes from the other Region VPCs and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection. Configure data center routers to make routing decisions based on the BGP communities received.

C.

Add the aggregate IP prefix for the other Region and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection.

D.

Add the aggregate IP prefix for the company's entire AWS environment and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection.

E.

Remove all the VPC CIDR prefixes from the list of subnets advertised through the local Direct Connect connection. Add both Regional aggregate IP prefixes to the list of subnets advertised through the Direct Connect connection on both sides of the network. Configure data center routers to make routing decisions based on the BGP communities received.

Question 3

A network engineer is designing the architecture for a healthcare company's workload that is moving to the AWS Cloud. All data to and from the on-premises environment must be encrypted in transit. All traffic also must be inspected in the cloud before the traffic is allowed to leave the cloud and travel to the on-premises environment or to the internet.

The company will expose components of the workload to the internet so that patients can reserve appointments. The architecture must secure these components and protect them against DDoS attacks. The architecture also must provide protection against financial liability for services that scale out during a DDoS event.

Which combination of steps should the network engineer take to meet all these requirements for the workload? (Choose three.)

Options:

A.

Use Traffic Mirroring to copy all traffic to a fleet of traffic capture appliances.

B.

Set up AWS WAF on all network components.

C.

Configure an AWS Lambda function to create Deny rules in security groups to block malicious IP addresses.

D.

Use AWS Direct Connect with MACsec support for connectivity to the cloud.

E.

Use Gateway Load Balancers to insert third-party firewalls for inline traffic inspection.

F.

Configure AWS Shield Advanced and ensure that it is configured on all public assets.