A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.
Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.
Which combination of solutions will meet these requirements? (Select TWO.)
A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.
Which solution will meet these requirements MOST cost-effectively?
A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.
The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.
A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.
Which solution will meet these requirements with the LEAST operational effort?
A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."
The data engineer needs to identify the source of the error and provide a solution.
Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)