A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.
Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)
A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.
A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.
The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.
Which solution will meet these requirements in the MOST cost-effective way?
A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.
The data engineer's original query is as follows:
SELECT product_name, sum(sales_amount)
FROM sales_data
WHERE year = 2023
GROUP BY product_name
How should the data engineer modify the Athena query to meet these requirements?
A company wants to migrate data from an Amazon RDS for PostgreSQL DB instance in the eu-east-1 Region of an AWS account named Account_A. The company will migrate the data to an Amazon Redshift cluster in the eu-west-1 Region of an AWS account named Account_B.
Which solution will give AWS Database Migration Service (AWS DMS) the ability to replicate data between two data stores?