A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.
The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.
Which solution will meet these requirements with the LEAST operational overhead?
A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.
The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.
Which solution will meet these requirements?
A data engineer needs to maintain a central metadata repository that users access through Amazon EMR and Amazon Athena queries. The repository needs to provide the schema and properties of many tables. Some of the metadata is stored in Apache Hive. The data engineer needs to import the metadata from Hive into the central metadata repository.
Which solution will meet these requirements with the LEAST development effort?
A data engineer needs to debug an AWS Glue job that reads from Amazon S3 and writes to Amazon Redshift. The data engineer enabled the bookmark feature for the AWS Glue job. The data engineer has set the maximum concurrency for the AWS Glue job to 1.
The AWS Glue job is successfully writing the output to Amazon Redshift. However, the Amazon S3 files that were loaded during previous runs of the AWS Glue job are being reprocessed by subsequent runs.
What is the likely reason the AWS Glue job is reprocessing the files?