Winter Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

AWS Certified Associate Changed Data-Engineer-Associate Questions

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 17

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

Options:

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

Question 18

An ecommerce company wants to use AWS to migrate data pipelines from an on-premises environment into the AWS Cloud. The company currently uses a third-party too in the on-premises environment to orchestrate data ingestion processes.

The company wants a migration solution that does not require the company to manage servers. The solution must be able to orchestrate Python and Bash scripts. The solution must not require the company to refactor any code.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

AWS Lambda

B.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

C.

AWS Step Functions

D.

AWS Glue

Question 19

A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventorymanagement system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.

Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.

Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)

Options:

A.

The producer experienced network-related timeouts.

B.

The stream's value for the IteratorAgeMilliseconds metric was too high.

C.

There was a change in the number of shards, record processors, or both.

D.

The AggregationEnabled configuration property was set to true.

E.

The max_records configuration property was set to a number that was too high.

Question 20

A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.

The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.

The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.

Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)

Options:

A.

Configure the third-party application to create the files in a columnar format.

B.

Develop an AWS Glue ETL job to convert the multiple daily CSV files to one file for each day.

C.

Partition the order data in the S3 bucket based on order date.

D.

Configure the third-party application to create the files in JSON format.

E.

Load the JSON data into the Amazon Redshift table in a SUPER type column.