A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.
Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)
A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.
The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.
Which solution will meet these requirements?
A data engineer is configuring Amazon SageMaker Studio to use AWS Glue interactive sessions to prepare data for machine learning (ML) models.
The data engineer receives an access denied error when the data engineer tries to prepare the data by using SageMaker Studio.
Which change should the engineer make to gain access to SageMaker Studio?
A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.
Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.
Which solution will meet this requirement with the LEAST latency?