Big Black Friday Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

ANS-C01 Exam Dumps : Amazon AWS Certified Advanced Networking - Specialty

PDF
ANS-C01 pdf
 Real Exam Questions and Answer
 Last Update: Nov 29, 2025
 Question and Answers: 290 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$25.5  $84.99
ANS-C01 exam
PDF + Testing Engine
ANS-C01 PDF + engine
 Both PDF & Practice Software
 Last Update: Nov 29, 2025
 Question and Answers: 290
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$40.5  $134.99
Testing Engine
ANS-C01 Engine
 Desktop Based Application
 Last Update: Nov 29, 2025
 Question and Answers: 290
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$30  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Papua new Guinea certstopics Papua new Guinea
Africa
Sep 3, 2025
certstopics verified questions and answers accurately reflected the content of the ANS-C01 exam. Real exams made easy!
Portugal certstopics Portugal
Saige
Sep 2, 2025
Certstopics's verified questions and answers for ANS-C01 were spot-on. They provided me with a clear understanding of the exam format and content.

Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Question 1

A company is planning to use an AWS Transit Gateway hub and spoke architecture to migrate to AWS. The current on-premises multi-protocol label switching (MPLS) network has strict controls that enforce network segmentation by using MPLS VPNs. The company has provisioned two 10 Gbps AWS Direct Connect connections to provide resilient, high-speed, low-latency connectivity to AWS.

A security engineer needs to apply the concept of network segmentation to the AWS environment to ensure that virtual routing and forwarding (VRF) is logically separated for each of the company's software development environments. The number of MPLS VPNs will increase in the future. On-premises MPLS VPNs will have overlapping address space. The company's AWS network design must support overlapping address space for the VPNs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a software-defined WAN (SD-WAN) head-end virtual appliance and an SD-WAN controller into a Transit Gateway Connect VPC. Configure the company's edge routers to be managed by the new SD-WAN controller and to use SD-WAN to segment the traffic into the defined segments for each of the company's development environments.

B.

Configure IPsec VPNs on the company edge routers for each MPLS VPN for each of the company's development environments. Attach each IPsec VPN tunnel to a discrete MPLS VPN. Configure AWS Site-to-Site VPN connections that terminate at a transit gateway for each MPLS VPN. Configure a transit gateway route table that matches the MPLS VPN for each Transit Gateway VPN attachment.

C.

Create a transit VPC that terminates at the AWS Site-to-Site VRF-aware IPsec VPN. Configure IPsec VPN connections to each VPC for each of the company's development environment VRFs.

D.

Configure a Transit Gateway Connect attachment for each MPLS VPN between the company's edge routers and Transit Gateway. Configure a transit gateway route table that matches the MPLS VPN for each of the company's development environments.

Buy Now
Question 2

A company uses a 1 Gbps AWS Direct Connect connection to connect its AWS environment to its on-premises data center. The connection provides employees with access to an application VPC that is hosted on AWS. Many remote employees use a company-provided VPN to connect to the data center. These employees are reporting slowness when they access the application during business hours. On-premises users have started to report similar slowness while they are in the office.

The company plans to build an additional application on AWS. On-site and remote employees will use the additional application. After the deployment of this additional application, the company will need 20% more bandwidth than the company currently uses. With the increased usage, the company wants to add resiliency to the AWS connectivity. A network engineer must review the current implementation and must make improvements within a limited budget.

What should the network engineer do to meet these requirements MOST cost-effectively?

Options:

A.

Set up a new 1 Gbps Direct Connect dedicated connection to accommodate the additional traffic load from remote employees and the additional application. Create a link aggregation group (LAG).

B.

Deploy an AWS Site-to-Site VPN connection to the application VPC. Configure the on-premises routing for the remote employees to connect to the Site-to-Site VPN connection.

C.

Deploy Amazon Workspaces into the application VPInstruct the remote employees to connect to Workspaces.

D.

Replace the existing 1 Gbps Direct Connect connection with two new 2 Gbps Direct Connect hosted connections. Create an AWS Client VPN endpoint in the application VPC. Instruct the remote employees to connect to the Client VPN endpoint.

Question 3

A company is using third-party firewall appliances to monitor and inspect traffic on premises The company wants to use this same model on AWS. The company has a single VPC with an internet gateway. The VPC has a fleet of web servers that run on Amazon EC2 instances that are managed by an Auto Scaling group.

The company's network team needs to work with the security team to establish inline inspection of all packets that are sent to and from the web servers. The solution must scale as the fleet of virtual firewall appliances scales.

Which combination of steps should the network team take to implement this solution? (Select THREE.)

Options:

A.

Create a new VPC, and deploy a fleet of firewall appliances. Create a Gateway Load Balancer. Add the firewall appliances as targets.

B.

Create a security group for use with the firewall appliances, and allow port 443. Allow a port for the Gateway Load Balancer to perform health checks.

C.

Create a security group for use with the firewall appliances, and allow port 6081. Allow a port for the Gateway Load Balancer to perform health checks.

D.

Deploy a fleet of firewall appliances to the existing VPC. Create a Gateway Load Balancer. Add the firewall appliances as targets.

E.

Update the internet gateway route table and the web server route table to send traffic to and from the internet to the VPC endpoint ID of the Gateway Load Balancer. Update the subnet route table that is associated with the Gateway Load Balancer endpoint to direct internet traffic to the internet gateway.

F.

Create a new route table inside the web server VPC. Create a new edge association with the internet gateway. Update the internet gateway route table and the web server route table to send traffic to and from the internet to the VPC endpoint ID of the Gateway Load Balancer. Update the subnet route table that is associated with the Gateway Load Balancer endpoint to direct internet traffic to the internet gateway.