New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

ANS-C01 Exam Dumps : Amazon AWS Certified Advanced Networking - Specialty

PDF
ANS-C01 pdf
 Real Exam Questions and Answer
 Last Update: Jan 1, 2026
 Question and Answers: 290 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$25.5  $84.99
ANS-C01 exam
PDF + Testing Engine
ANS-C01 PDF + engine
 Both PDF & Practice Software
 Last Update: Jan 1, 2026
 Question and Answers: 290
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$40.5  $134.99
Testing Engine
ANS-C01 Engine
 Desktop Based Application
 Last Update: Jan 1, 2026
 Question and Answers: 290
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$30  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Portugal certstopics Portugal
Saige
Oct 25, 2025
Certstopics's verified questions and answers for ANS-C01 were spot-on. They provided me with a clear understanding of the exam format and content.
Papua new Guinea certstopics Papua new Guinea
Africa
Oct 23, 2025
certstopics verified questions and answers accurately reflected the content of the ANS-C01 exam. Real exams made easy!

Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Question 1

A company's application team is unable to launch new resources into its VPC. A network engineer discovers that the VPC has run out of usable IP addresses. The VPC CIDR block is 172.16.0.0/16.

Which additional CIDR block can the network engineer attach to the VPC?

Options:

A.

172.17.0.0/29

B.

10.0.0.0/16

C.

172.17.0.0/16

D.

192.168.0.0/16

Buy Now
Question 2

A network engineer needs to set up an Amazon EC2 Auto Scaling group to run a Linux-based network appliance in a highly available architecture. The network engineer is configuring the new launch template for the Auto Scaling group.

In addition to the primary network interface the network appliance requires a second network interface that will be used exclusively by the application to exchange traffic with hosts over the internet. The company has set up a Bring Your Own IP (BYOIP) pool that includes an Elastic IP address that should be used as the public IP address for the second network interface.

How can the network engineer implement the required architecture?

Options:

A.

Configure the two network interfaces in the launch template. Define the primary network interface to be created in one of the private subnets. For the second network interface, select one of the public subnets. Choose the BYOIP pool ID as the source of public IP addresses.

B.

Configure the primary network interface in a private subnet in the launch template. Use the user data option to run a cloud-init script after boot to attach the second network interface from a subnet with auto-assign public IP addressing enabled.

C.

Create an AWS Lambda function to run as a lifecycle hook of the Auto Scaling group when an instance is launching. In the Lambda function, assign a network interface to an AWS Global Accelerator endpoint.

D.

During creation of the Auto Scaling group, select subnets for the primary network interface. Use the user data option to run a cloud-init script to allocate a second network interface and to associate an Elastic IP address from the BYOIP pool.

Question 3

An education agency is preparing for its annual competition between schools. In the competition, students at schools from around the country solve math problems, complete puzzles, and write essays.

The IP addressing plan of all the schools is well-known and is administered centrally. The competition is hosted in the AWS Cloud and is not publicly available. All competition traffic must be encrypted in transit. Only authorized endpoints can access the competition. All the schools have firewall policies that block ICMP traffic.

A network engineer builds a solution in which all the schools access the competition through AWS Site-to-Site VPN connections. The network engineer uses BGP as the routing protocol. The network engineer must implement a solution that notifies schools when they lose connectivity and need to take action on their premises to address the issue.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

Options:

A.

Monitor the state of the VPN tunnels by using Amazon CloudWatch. Create a CloudWatch alarm that uses Amazon Simple Notification Service (Amazon SNS) to notifypeople at the affected school if the tunnels are down.

B.

Create a scheduled AWS Lambda function that pings each school's on-premises customer gateway device. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if the ping fails.

C.

Create a scheduled AWS Lambda function that uses the VPC Reachability Analyzer API to verify the connectivity. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.

D.

Create an Amazon CloudWatch dashboard for each school to show all CloudWatch metrics for each school's Site-to-Site VPN connection. Share each dashboard with the appropriate school.

E.

Create a scheduled AWS Lambda function to monitor the existence of each school's routes in the VPC route table where VPN routes are propagated. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.