Month End Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

ANS-C01 Exam Dumps : Amazon AWS Certified Advanced Networking - Specialty

PDF
ANS-C01 pdf
 Real Exam Questions and Answer
 Last Update: Jan 28, 2026
 Question and Answers: 290 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$25.5  $84.99
ANS-C01 exam
PDF + Testing Engine
ANS-C01 PDF + engine
 Both PDF & Practice Software
 Last Update: Jan 28, 2026
 Question and Answers: 290
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$40.5  $134.99
Testing Engine
ANS-C01 Engine
 Desktop Based Application
 Last Update: Jan 28, 2026
 Question and Answers: 290
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$30  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Papua new Guinea certstopics Papua new Guinea
Africa
Dec 28, 2025
certstopics verified questions and answers accurately reflected the content of the ANS-C01 exam. Real exams made easy!
Portugal certstopics Portugal
Saige
Dec 3, 2025
Certstopics's verified questions and answers for ANS-C01 were spot-on. They provided me with a clear understanding of the exam format and content.

Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Question 1

A company has its production VPC (VPC-A) in the eu-west-1 Region in Account 1. VPC-A is attached to a transit gateway (TGW-A) that is connected to an on-premises data center in Dublin, Ireland, by an AWS Direct Connect transit VIF that is configured for an AWS Direct Connect gateway. The company also has a staging VPC (VPC-B) that is attached to another transit gateway (TGW-B) in the eu-west-2 Region in Account 2.

A network engineer must implement connectivity between VPC-B and the on-premises data center in Dublin.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Configure inter-Region VPC peering between VPC-A and VPC-B. Add the required VPC peering routes. Add the VPC-B CIDR block in the allowed prefixes on the Direct Connect gateway association.

B.

Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.

C.

Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.

D.

Configure inter-Region transit gateway peering between TGW-A and TGW-B. Add the peering routes in the transit gateway route tables. Add both the VPC-A and the VPC-B CIDR block under the allowed prefix list in the Direct Connect gateway association.

E.

Configure an AWS Site-to-Site VPN connection over the transit VIF to TGW-B as a VPN attachment.

Buy Now
Question 2

A company plans to run a computationally intensive data processing application on AWS. The data is highly sensitive. The VPC must have no direct internet access, and the company has applied strict network security to control access.

Data scientists will transfer data from the company's on-premises data center to the instances by using an AWS Site-to-Site VPN connection. The on-premises data center uses the network range 172.31.0.0/20 and will use the network range 172.31.16.0/20 in the application VPC.

The data scientists report that they can start new instances of the application but that they cannot transfer any data from the on-premises data center. A network engineer enables VPC flow logs and sends a ping to one of the instances to test reachability. The flow logs show the following:

The network engineer must recommend a solution that will give the data scientists the ability to transfer data from the on-premises data center.

Which solution will meet these requirements?

Options:

A.

Modify the security group for the application. Add an inbound rule to allow traffic from the on-premises data center network range to the application.

B.

Modify the network ACLs for the VPC subnet. Add an inbound rule to allow traffic from the on-premises data center network range to the VPC subnet range.

C.

Modify the network ACLs for the VPC subnet. Add an outbound rule to allow traffic from the VPC subnet range to the on-premises data center network range.

D.

Modify the security group for the application. Add an outbound rule to allow traffic from the application to the on-premises data center network range.

Question 3

A European car manufacturer wants to migrate its customer-facing services and its analytics platform from two on-premises data centers to the AWS Cloud. The company has a 50-mile (80.4 km) separation between its on-premises data centers and must maintain that separation between its two locations in the cloud. The company also needs failover capabilities between the two locations in the cloud.

The company's infrastructure team creates several accounts to separate workloads and responsibilities. The company provisions resources in the eu-west-3 Region and in the eu-central-1 Region. The company selects an AWS Direct Connect Partner in each Region and requests two resilient 1 Gbps fiber connections from each provider.

The company's network engineer must establish a connection between all VPCs in the accounts and between the on-premises network and the AWS Cloud. The solution must provide access to all services in both Regions in case of network issues.

Which solution will meet these requirements?

Options:

A.

Create a Direct Connect gateway. Create a private VIF on each of the Direct Connect connections. Attach the private VIFs to the Direct Connect gateway. Use equal-cost multi-path (ECMP) routing to aggregate the four connections across the two Regions. Attach the Direct Connect gateway directly to each VPC's virtual private gateway.

B.

Create a Direct Connect gateway. Create a transit gateway. Attach the transit gateway to the Direct Connect gateway. Create a transit VIF on each of the Direct Connect connections. Attach the transit VIFs to the Direct Connect gateway. Use a link aggregation group (LAG) to aggregate the four connections across the two Regions. Attach the transit gateway directly to each VPC.

C.

Create a Direct Connect gateway. Create a transit gateway in each Region. Attach the transit gateways to the Direct Connect gateway. Create a transit VIF on each of the Direct Connect connections. Attach the transit VIFs to the Direct Connect gateway. Peer the transit gateways. Attach the transit gateways in each Region to the VPCs in the same Region.

D.

Create a Direct Connect gateway. Create a private VIF on each of the Direct Connect connections. Attach the private VIFs to the Direct Connect gateway. Use a link aggregation group (LAG) to aggregate the four connections across the two Regions. Create a transit gateway. Attach the transit gateway to the Direct Connect gateway. Attach the transit gateway directly to each VPC.