New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

ANS-C01 Exam Dumps : Amazon AWS Certified Advanced Networking - Specialty

PDF
ANS-C01 pdf
 Real Exam Questions and Answer
 Last Update: Dec 29, 2025
 Question and Answers: 290 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$25.5  $84.99
ANS-C01 exam
PDF + Testing Engine
ANS-C01 PDF + engine
 Both PDF & Practice Software
 Last Update: Dec 29, 2025
 Question and Answers: 290
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$40.5  $134.99
Testing Engine
ANS-C01 Engine
 Desktop Based Application
 Last Update: Dec 29, 2025
 Question and Answers: 290
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$30  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Portugal certstopics Portugal
Saige
Oct 25, 2025
Certstopics's verified questions and answers for ANS-C01 were spot-on. They provided me with a clear understanding of the exam format and content.
Papua new Guinea certstopics Papua new Guinea
Africa
Oct 23, 2025
certstopics verified questions and answers accurately reflected the content of the ANS-C01 exam. Real exams made easy!

Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Question 1

A company wants to implement a distributed architecture on AWS that uses a Gateway Load Balancer (GWLB) and GWLB endpoints.

The company has chosen a hub-and-spoke model. The model includes a GWLB and virtual appliances that are deployed into a centralized appliance VPC and GWLB endpoints. The model also includes internet gateways that are configured in spoke VPCs.

Which sequence of traffic flow to the internet from the spoke VPC is correct?

Options:

A.

1. An application in a spoke VPC sends traffic to the GWLB endpoint based on the VPC route table configuration.

2. Traffic is delivered securely and privately to the GWLB.

3. The GWLB sends the traffic to a virtual appliance for inspection.

4. Return traffic flows back to the GWLB endpoint and out to the internet through the internet gateway.

B.

1. An application in a spoke VPC sends traffic to the GWLB endpoint based on the VPC route table configuration.

2. Traffic is delivered securely and privately to the GWLB endpoint.

3. The GWLB sets the X-Forwarded-For request header and sends the traffic to a virtual appliance for inspection.

4. Return traffic flows back to the GWLB and out to the internet through an internet gateway.

C.

1. An application in a spoke VPC sends traffic to the GWLB endpoint.

2. Traffic is delivered securely and privately to the GWLB.

3. The GWLB sets the X-Forwarded-For request header and sends the traffic to a virtual appliance for inspection.

4. Return traffic flows back to the GWLB endpoint and out to the internet through the internet gateway.

D.

1. An application in a spoke VPC sends traffic to the GWLB.

2. Traffic is delivered securely and privately to the GWLB endpoint.

3. The GWLB sends the traffic to a virtual appliance for inspection.

4. Return traffic flows back to the GWLB and out to the internet through an internet gateway.

Buy Now
Question 2

A network engineer needs to deploy an AWS Network Firewall firewall into an existing AWS environment. The environment consists of the following:

A transit gateway with all VPCs attached to it

Several hundred application VPCs

A centralized egress internet VPC with a NAT gateway and an internet gateway

A centralized ingress internet VPC that hosts public Application Load Balancers

On-premises connectivity through an AWS Direct Connect gateway attachment

The application VPCs have workloads deployed across multiple Availability Zones in private subnets with the VPC route table s default route (0.0.0.0/0) pointing to the transit gateway. The Network Firewall firewall needs to inspect east-west (VPC-to-VPC) traffic and north-south (internet-bound and on-premises network) traffic by using Suricata compatible rules.

The network engineer must deploy the firewall by using a solution that requires the least possible architectural changes to the existing production environment.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Deploy Network Firewall in all Availability Zones in each application VPC.

B.

Deploy Network Firewall in all Availability Zones in a centralized inspection VPC.

C.

Update the HOME_NET rule group variable to include all CIDR ranges of the VPCs and on-premises networks.

D.

Update the EXTERNAL_NET rule group variable to include all CIDR ranges of the VPCs and on-premises networks.

E.

Configure a single transit gateway route table. Associate all application VPCs and the centralized inspection VPC with this route table.

F.

Configure two transit gateway route tables. Associate all application VPCs with one transit gateway route table. Associate the centralized inspection VPC with the other transit gateway route table.

Question 3

A network engineer needs to set up an Amazon EC2 Auto Scaling group to run a Linux-based network appliance in a highly available architecture. The network engineer is configuring the new launch template for the Auto Scaling group.

In addition to the primary network interface the network appliance requires a second network interface that will be used exclusively by the application to exchange traffic with hosts over the internet. The company has set up a Bring Your Own IP (BYOIP) pool that includes an Elastic IP address that should be used as the public IP address for the second network interface.

How can the network engineer implement the required architecture?

Options:

A.

Configure the two network interfaces in the launch template. Define the primary network interface to be created in one of the private subnets. For the second network interface, select one of the public subnets. Choose the BYOIP pool ID as the source of public IP addresses.

B.

Configure the primary network interface in a private subnet in the launch template. Use the user data option to run a cloud-init script after boot to attach the second network interface from a subnet with auto-assign public IP addressing enabled.

C.

Create an AWS Lambda function to run as a lifecycle hook of the Auto Scaling group when an instance is launching. In the Lambda function, assign a network interface to an AWS Global Accelerator endpoint.

D.

During creation of the Auto Scaling group, select subnets for the primary network interface. Use the user data option to run a cloud-init script to allocate a second network interface and to associate an Elastic IP address from the BYOIP pool.