Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

ANS-C01 Exam Dumps : Amazon AWS Certified Advanced Networking - Specialty

PDF
ANS-C01 pdf
 Real Exam Questions and Answer
 Last Update: Jan 20, 2026
 Question and Answers: 290 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$29.75  $84.99
ANS-C01 exam
PDF + Testing Engine
ANS-C01 PDF + engine
 Both PDF & Practice Software
 Last Update: Jan 20, 2026
 Question and Answers: 290
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$47.25  $134.99
Testing Engine
ANS-C01 Engine
 Desktop Based Application
 Last Update: Jan 20, 2026
 Question and Answers: 290
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$35  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Papua new Guinea certstopics Papua new Guinea
Africa
Dec 13, 2025
certstopics verified questions and answers accurately reflected the content of the ANS-C01 exam. Real exams made easy!
Portugal certstopics Portugal
Saige
Oct 21, 2025
Certstopics's verified questions and answers for ANS-C01 were spot-on. They provided me with a clear understanding of the exam format and content.

Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Question 1

A company is deploying a new application on AWS. The application uses dynamic multicasting. The company has five VPCs that are all attached to a transit gateway Amazon EC2 instances in each VPC need to be able to register dynamically to receive a multicast transmission.

How should a network engineer configure the AWS resources to meet these requirements?

Options:

A.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

B.

Create a static source multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

C.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow UDP traffic from the source to all receivers and to allow UDP traffic that is sent to the multicast group address.

D.

Create an Internet Group Management Protocol (IGMP) multicast domain within the transit gateway. Associate the VPCs and applicable subnets with the multicast domain. Register the multicast senders' network interface with the multicast domain. Adjust the network ACLs to allow TCP traffic from the source to all receivers and to allow TCP traffic that is sent to the multicast group address.

Buy Now
Question 2

A company's existing AWS environment contains public application servers that run on Amazon EC2 instances. The application servers run in a VPC subnet. Each server is associated with an Elastic IP address.

The company has a new requirement for firewall inspection of all traffic from the internet before the traffic reaches any EC2 instances. A security engineer has deployed and configured a Gateway Load Balancer (GLB) in a standalone VPC with a fleet of third-party firewalls.

How should a network engineer update the environment to ensure that the traffic travels across the fleet of firewalls?

Options:

A.

Deploy a transit gateway. Attach a GLB endpoint to the transit gateway. Attach the application VPC to the transit gateway. Update the application subnet route table's default route destination to be the GLB endpoint. Ensure that the EC2 instances' security group allows traffic from the GLB endpoint.

B.

Update the application subnet route table to have a default route to the GLB. On the standalone VPC that contains the firewall fleet, add a route in the route table for the application VPC's CIDR block with the GLB endpoint as the destination. Update the EC2 instances' security group to allow traffic from the GLB.

C.

Provision a GLB endpoint in the application VPC in a new subnet. Create a gateway route table with a route that specifies the application subnet CIDR block as the destination and the GLB endpoint as the target. Associate the gateway route table with the internet gateway in the application VPC. Update the application subnet route table's default route destination to be the GLB endpoint.

D.

Instruct the security engineer to move the GLB into the application VPC. Create a gateway route table. Associate the gateway route table with the application subnet. Add a default route to the gateway route table with the GLB as its destination. Update the route table on the GLB to direct traffic from the internet gateway to the application servers. Ensure that the EC2 instances' security group allows traffic from the GLB.

Question 3

A company is deploying third-party firewall appliances for traffic inspection and NAT capabilities in its VPC. The VPC is configured with private subnets and public subnets. The company needs to deploy the firewall appliances behind a load balancer.

Which architecture will meet these requirements MOST cost-effectively?

Options:

A.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

B.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.

C.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

D.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.