A continuous information security-monitoring program can BEST reduce risk through which of the following?
Collecting security events and correlating them to identify anomalies
Facilitating system-wide visibility into the activities of critical user accounts
Encompassing people, process, and technology
Logging both scheduled and unscheduled system changes
A continuous information security monitoring program can best reduce risk through encompassing people, process, and technology. A continuous information security monitoring program is a process that involves maintaining the ongoing awareness of the security status, events, and activities of a system or network, by collecting, analyzing, and reporting the security data and information, using various methods and tools. A continuous information security monitoring program can provide several benefits, such as:
A continuous information security monitoring program can best reduce risk through encompassing people, process, and technology, because it can ensure that the continuous information security monitoring program is holistic and comprehensive, and that it covers all the aspects and elements of the system or network security. People, process, and technology are the three pillars of a continuous information security monitoring program, and they represent the following:
The other options are not the best ways to reduce risk through a continuous information security monitoring program, but rather specific or partial ways that can contribute to the risk reduction. Collecting security events and correlating them to identify anomalies is a specific way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only focuses on one aspect of the security data and information, and it does not address the other aspects, such as the security objectives and requirements, the security controls and measures, and the security feedback and improvement. Facilitating system-wide visibility into the activities of critical user accounts is a partial way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only covers one element of the system or network security, and it does not cover the other elements, such as the security threats and vulnerabilities, the security incidents and impacts, and the security response and remediation. Logging both scheduled and unscheduled system changes is a specific way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only focuses on one type of the security events and activities, and it does not focus on the other types, such as the security alerts and notifications, the security analysis and correlation, and the security reporting and documentation.
What is the MOST important step during forensic analysis when trying to learn the purpose of an unknown application?
Disable all unnecessary services
Ensure chain of custody
Prepare another backup of the system
Isolate the system from the network
Isolating the system from the network is the most important step during forensic analysis when trying to learn the purpose of an unknown application. An unknown application is an application that is not recognized or authorized by the system or network administrator, and that may have been installed or executed without the user’s knowledge or consent. An unknown application may have various purposes, such as:
Forensic analysis is a process that involves examining and investigating the system or network for any evidence or traces of the unknown application, such as its origin, nature, behavior, and impact. Forensic analysis can provide several benefits, such as:
Isolating the system from the network is the most important step during forensic analysis when trying to learn the purpose of an unknown application, because it can ensure that the system is isolated and protected from any external or internal influences or interferences, and that the forensic analysis is conducted in a safe and controlled environment. Isolating the system from the network can also help to:
The other options are not the most important steps during forensic analysis when trying to learn the purpose of an unknown application, but rather steps that should be done after or along with isolating the system from the network. Disabling all unnecessary services is a step that should be done after isolating the system from the network, because it can ensure that the system is optimized and simplified for the forensic analysis, and that the system resources and functions are not consumed or affected by any irrelevant or redundant services. Ensuring chain of custody is a step that should be done along with isolating the system from the network, because it can ensure that the integrity and authenticity of the evidence are maintained and documented throughout the forensic process, and that the evidence can be traced and verified. Preparing another backup of the system is a step that should be done after isolating the system from the network, because it can ensure that the system data and configuration are preserved and replicated for the forensic analysis, and that the system can be restored and recovered in case of any damage or loss.
Recovery strategies of a Disaster Recovery planning (DRIP) MUST be aligned with which of the following?
Hardware and software compatibility issues
Applications’ critically and downtime tolerance
Budget constraints and requirements
Cost/benefit analysis and business objectives
Recovery strategies of a Disaster Recovery planning (DRP) must be aligned with the cost/benefit analysis and business objectives. A DRP is a part of a BCP/DRP that focuses on restoring the normal operation of the organization’s IT systems and infrastructure after a disruption or disaster. A DRP should include various components, such as:
Recovery strategies of a DRP must be aligned with the cost/benefit analysis and business objectives, because it can ensure that the DRP is feasible and suitable, and that it can achieve the desired outcomes and objectives in a cost-effective and efficient manner. A cost/benefit analysis is a technique that compares the costs and benefits of different recovery strategies, and determines the optimal one that provides the best value for money. A business objective is a goal or a target that the organization wants to achieve through its IT systems and infrastructure, such as increasing the productivity, profitability, or customer satisfaction. A recovery strategy that is aligned with the cost/benefit analysis and business objectives can help to:
The other options are not the factors that the recovery strategies of a DRP must be aligned with, but rather factors that should be considered or addressed when developing or implementing the recovery strategies of a DRP. Hardware and software compatibility issues are factors that should be considered when developing the recovery strategies of a DRP, because they can affect the functionality and interoperability of the IT systems and infrastructure, and may require additional resources or adjustments to resolve them. Applications’ criticality and downtime tolerance are factors that should be addressed when implementing the recovery strategies of a DRP, because they can determine the priority and urgency of the recovery for different applications, and may require different levels of recovery objectives and resources. Budget constraints and requirements are factors that should be considered when developing the recovery strategies of a DRP, because they can limit the availability and affordability of the IT resources and funds for the recovery, and may require trade-offs or compromises to balance them.
What would be the MOST cost effective solution for a Disaster Recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours?
Warm site
Hot site
Mirror site
Cold site
A warm site is the most cost effective solution for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours. A DR site is a backup facility that can be used to restore the normal operation of the organization’s IT systems and infrastructure after a disruption or disaster. A DR site can have different levels of readiness and functionality, depending on the organization’s recovery objectives and budget. The main types of DR sites are:
A warm site is the most cost effective solution for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it can provide a balance between the recovery time and the recovery cost. A warm site can enable the organization to resume its critical functions and operations within a reasonable time frame, without spending too much on the DR site maintenance and operation. A warm site can also provide some flexibility and scalability for the organization to adjust its recovery strategies and resources according to its needs and priorities.
The other options are not the most cost effective solutions for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, but rather solutions that are either too costly or too slow for the organization’s recovery objectives and budget. A hot site is a solution that is too costly for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to invest a lot of money on the DR site equipment, software, and services, and to pay for the ongoing operational and maintenance costs. A hot site may be more suitable for the organization’s systems that cannot be unavailable for more than a few hours or minutes, or that have very high availability and performance requirements. A mirror site is a solution that is too costly for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to duplicate its entire primary site, with the same hardware, software, data, and applications, and to keep them online and synchronized at all times. A mirror site may be more suitable for the organization’s systems that cannot afford any downtime or data loss, or that have very strict compliance and regulatory requirements. A cold site is a solution that is too slow for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to spend a lot of time and effort on the DR site installation, configuration, and restoration, and to rely on other sources of backup data and applications. A cold site may be more suitable for the organization’s systems that can be unavailable for more than a few days or weeks, or that have very low criticality and priority.
Copyright © 2021-2024 CertsTopics. All Rights Reserved