Black Friday Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
307
Last Updated:
Nov 23, 2024
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2024 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

An office security agency conducted a successful pilot using 100 cameras installed at key locations within the main office. Images from the cameras were uploaded to Amazon S3 and tagged using Amazon Rekognition, and the results were stored in Amazon ES. The agency is now looking to expand the pilot into a full production system using thousands of video cameras in its office locations globally. The goal is to identify activities performed by non-employees in real time.

Which solution should the agency consider?

Options:

A.

Use a proxy server at each local office and for each camera, and stream the RTSP feed to a unique

Amazon Kinesis Video Streams video stream. On each stream, use Amazon Rekognition Video and create

a stream processor to detect faces from a collection of known employees, and alert when non-employees

are detected.

B.

Use a proxy server at each local office and for each camera, and stream the RTSP feed to a unique

Amazon Kinesis Video Streams video stream. On each stream, use Amazon Rekognition Image to detect

faces from a collection of known employees and alert when non-employees are detected.

C.

Install AWS DeepLens cameras and use the DeepLens_Kinesis_Video module to stream video to

Amazon Kinesis Video Streams for each camera. On each stream, use Amazon Rekognition Video and

create a stream processor to detect faces from a collection on each stream, and alert when nonemployees

are detected.

D.

Install AWS DeepLens cameras and use the DeepLens_Kinesis_Video module to stream video to

Amazon Kinesis Video Streams for each camera. On each stream, run an AWS Lambda function to

capture image fragments and then call Amazon Rekognition Image to detect faces from a collection of

known employees, and alert when non-employees are detected.

Buy Now
Question 2

A machine learning (ML) specialist is using the Amazon SageMaker DeepAR forecasting algorithm to train a model on CPU-based Amazon EC2 On-Demand instances. The model currently takes multiple hours to train. The ML specialist wants to decrease the training time of the model.

Which approaches will meet this requirement7 (SELECT TWO )

Options:

A.

Replace On-Demand Instances with Spot Instances

B.

Configure model auto scaling dynamically to adjust the number of instances automatically.

C.

Replace CPU-based EC2 instances with GPU-based EC2 instances.

D.

Use multiple training instances.

E.

Use a pre-trained version of the model. Run incremental training.

Question 3

A Data Science team within a large company uses Amazon SageMaker notebooks to access data stored in Amazon S3 buckets. The IT Security team is concerned that internet-enabled notebook instances create a security vulnerability where malicious code running on the instances could compromise data privacy. The company mandates that all instances stay within a secured VPC with no internet access, and data communication traffic must stay within the AWS network.

How should the Data Science team configure the notebook instance placement to meet these requirements?

Options:

A.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Place the Amazon SageMaker endpoint and S3 buckets within the same VPC.

B.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Use 1AM policies to grant access to Amazon S3 and Amazon SageMaker.

C.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has S3 VPC endpoints and Amazon SageMaker VPC endpoints attached to it.

D.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has a NAT gateway and an associated security group allowing only outbound connections to Amazon S3 and Amazon SageMaker