New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks-Certified-Professional-Data-Engineer Exam Dumps : Databricks Certified Data Engineer Professional Exam

PDF
Databricks-Certified-Professional-Data-Engineer pdf
 Real Exam Questions and Answer
 Last Update: Jan 14, 2026
 Question and Answers: 195 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$25.5  $84.99
Databricks-Certified-Professional-Data-Engineer exam
PDF + Testing Engine
Databricks-Certified-Professional-Data-Engineer PDF + engine
 Both PDF & Practice Software
 Last Update: Jan 14, 2026
 Question and Answers: 195
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$40.5  $134.99
Testing Engine
Databricks-Certified-Professional-Data-Engineer Engine
 Desktop Based Application
 Last Update: Jan 14, 2026
 Question and Answers: 195
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$30  $99.99
Last Week Results
32 Customers Passed Databricks
Databricks-Certified-Professional-Data-Engineer Exam
Average Score In Real Exam
86.7%
Questions came word for word from this dump
88.6%
Databricks Bundle Exams
Databricks Bundle Exams
 Duration: 3 to 12 Months
 4 Certifications
  12 Exams
 Databricks Updated Exams
 Most authenticate information
 Prepare within Days
 Time-Saving Study Content
 90 to 365 days Free Update
$249.6*
Free Databricks-Certified-Professional-Data-Engineer Exam Dumps

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Sweden certstopics Sweden
Marco
Jan 8, 2026
Certstopics.com ensured my Databricks Databricks-Certified-Professional-Data-Engineer Exam readiness. Their comprehensive resources covered all the bases.
Zambia certstopics Zambia
Elias
Jan 5, 2026
Databricks victory is within reach with certstopics. Verified Q&A, real exam practice, and 24/7 support ensure success.
Pakistan certstopics Pakistan
Agneza
Nov 7, 2025
I owe my success in the Databricks-Certified-Professional-Data-Engineer exam to certstopics authentic study material and comprehensive preparation resources.
Smaller Territories of the UK certstopics Smaller Territories of the UK
Kailee
Oct 18, 2025
Certstopics PDFs for Databricks-Certified-Professional-Data-Engineer were comprehensive and easy to understand. Real exams felt like a breeze!

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 1

An hourly batch job is configured to ingest data files from a cloud object storage container where each batch represent all records produced by the source system in a given hour. The batch job to process these records into the Lakehouse is sufficiently delayed to ensure no late-arriving data is missed. The user_id field represents a unique key for the data, which has the following schema:

user_id BIGINT, username STRING, user_utc STRING, user_region STRING, last_login BIGINT, auto_pay BOOLEAN, last_updated BIGINT

New records are all ingested into a table named account_history which maintains a full record of all data in the same schema as the source. The next table in the system is named account_current and is implemented as a Type 1 table representing the most recent value for each unique user_id.

Assuming there are millions of user accounts and tens of thousands of records processed hourly, which implementation can be used to efficiently update the described account_current table as part of each hourly batch job?

Options:

A.

Use Auto Loader to subscribe to new files in the account history directory; configure a Structured Streaminq trigger once job to batch update newly detected files into the account current table.

B.

Overwrite the account current table with each batch using the results of a query against the account history table grouping by user id and filtering for the max value of last updated.

C.

Filter records in account history using the last updated field and the most recent hour processed, as well as the max last iogin by user id write a merge statement to update or insert the most recent value for each user id.

D.

Use Delta Lake version history to get the difference between the latest version of account history and one version prior, then write these records to account current.

E.

Filter records in account history using the last updated field and the most recent hour processed, making sure to deduplicate on username; write a merge statement to update or insert the

most recent value for each username.

Buy Now
Question 2

A junior data engineer is working to implement logic for a Lakehouse table named silver_device_recordings. The source data contains 100 unique fields in a highly nested JSON structure.

The silver_device_recordings table will be used downstream to power several production monitoring dashboards and a production model. At present, 45 of the 100 fields are being used in at least one of these applications.

The data engineer is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields.

Which of the following accurately presents information about Delta Lake and Databricks that may impact their decision-making process?

Options:

A.

The Tungsten encoding used by Databricks is optimized for storing string data; newly-added native support for querying JSON strings means that string types are always most efficient.

B.

Because Delta Lake uses Parquet for data storage, data types can be easily evolved by just modifying file footer information in place.

C.

Human labor in writing code is the largest cost associated with data engineering workloads; as such, automating table declaration logic should be a priority in all migration workloads.

D.

Because Databricks will infer schema using types that allow all observed data to be processed, setting types manually provides greater assurance of data quality enforcement.

E.

Schema inference and evolution on .Databricks ensure that inferred types will always accurately match the data types used by downstream systems.

Question 3

A data engineer is performing a join operating to combine values from a static userlookup table with a streaming DataFrame streamingDF.

Which code block attempts to perform an invalid stream-static join?

Options:

A.

userLookup.join(streamingDF, ["userid"], how="inner")

B.

streamingDF.join(userLookup, ["user_id"], how="outer")

C.

streamingDF.join(userLookup, ["user_id”], how="left")

D.

streamingDF.join(userLookup, ["userid"], how="inner")

E.

userLookup.join(streamingDF, ["user_id"], how="right")