Big Black Friday Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks-Certified-Professional-Data-Engineer Exam Dumps : Databricks Certified Data Engineer Professional Exam

PDF
Databricks-Certified-Professional-Data-Engineer pdf
 Real Exam Questions and Answer
 Last Update: Nov 26, 2025
 Question and Answers: 195 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$25.5  $84.99
Databricks-Certified-Professional-Data-Engineer exam
PDF + Testing Engine
Databricks-Certified-Professional-Data-Engineer PDF + engine
 Both PDF & Practice Software
 Last Update: Nov 26, 2025
 Question and Answers: 195
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$40.5  $134.99
Testing Engine
Databricks-Certified-Professional-Data-Engineer Engine
 Desktop Based Application
 Last Update: Nov 26, 2025
 Question and Answers: 195
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$30  $99.99
Last Week Results
32 Customers Passed Databricks
Databricks-Certified-Professional-Data-Engineer Exam
Average Score In Real Exam
86.7%
Questions came word for word from this dump
88.6%
Databricks Bundle Exams
Databricks Bundle Exams
 Duration: 3 to 12 Months
 4 Certifications
  12 Exams
 Databricks Updated Exams
 Most authenticate information
 Prepare within Days
 Time-Saving Study Content
 90 to 365 days Free Update
$249.6*
Free Databricks-Certified-Professional-Data-Engineer Exam Dumps

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

What our customers are saying

Pakistan certstopics Pakistan
Agneza
Nov 11, 2025
I owe my success in the Databricks-Certified-Professional-Data-Engineer exam to certstopics authentic study material and comprehensive preparation resources.
Smaller Territories of the UK certstopics Smaller Territories of the UK
Kailee
Oct 13, 2025
Certstopics PDFs for Databricks-Certified-Professional-Data-Engineer were comprehensive and easy to understand. Real exams felt like a breeze!
Zambia certstopics Zambia
Elias
Oct 3, 2025
Databricks victory is within reach with certstopics. Verified Q&A, real exam practice, and 24/7 support ensure success.
Sweden certstopics Sweden
Marco
Oct 2, 2025
Certstopics.com ensured my Databricks Databricks-Certified-Professional-Data-Engineer Exam readiness. Their comprehensive resources covered all the bases.

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 1

All records from an Apache Kafka producer are being ingested into a single Delta Lake table with the following schema:

key BINARY, value BINARY, topic STRING, partition LONG, offset LONG, timestamp LONG

There are 5 unique topics being ingested. Only the "registration" topic contains Personal Identifiable Information (PII). The company wishes to restrict access to PII. The company also wishes to only retain records containing PII in this table for 14 days after initial ingestion. However, for non-PII information, it would like to retain these records indefinitely.

Which of the following solutions meets the requirements?

Options:

A.

All data should be deleted biweekly; Delta Lake's time travel functionality should be leveraged to maintain a history of non-PII information.

B.

Data should be partitioned by the registration field, allowing ACLs and delete statements to be set for the PII directory.

C.

Because the value field is stored as binary data, this information is not considered PII and no special precautions should be taken.

D.

Separate object storage containers should be specified based on the partition field, allowing isolation at the storage level.

E.

Data should be partitioned by the topic field, allowing ACLs and delete statements to leverage partition boundaries.

Buy Now
Question 2

An hourly batch job is configured to ingest data files from a cloud object storage container where each batch represent all records produced by the source system in a given hour. The batch job to process these records into the Lakehouse is sufficiently delayed to ensure no late-arriving data is missed. The user_id field represents a unique key for the data, which has the following schema:

user_id BIGINT, username STRING, user_utc STRING, user_region STRING, last_login BIGINT, auto_pay BOOLEAN, last_updated BIGINT

New records are all ingested into a table named account_history which maintains a full record of all data in the same schema as the source. The next table in the system is named account_current and is implemented as a Type 1 table representing the most recent value for each unique user_id.

Assuming there are millions of user accounts and tens of thousands of records processed hourly, which implementation can be used to efficiently update the described account_current table as part of each hourly batch job?

Options:

A.

Use Auto Loader to subscribe to new files in the account history directory; configure a Structured Streaminq trigger once job to batch update newly detected files into the account current table.

B.

Overwrite the account current table with each batch using the results of a query against the account history table grouping by user id and filtering for the max value of last updated.

C.

Filter records in account history using the last updated field and the most recent hour processed, as well as the max last iogin by user id write a merge statement to update or insert the most recent value for each user id.

D.

Use Delta Lake version history to get the difference between the latest version of account history and one version prior, then write these records to account current.

E.

Filter records in account history using the last updated field and the most recent hour processed, making sure to deduplicate on username; write a merge statement to update or insert the

most recent value for each username.

Question 3

To reduce storage and compute costs, the data engineering team has been tasked with curating a series of aggregate tables leveraged by business intelligence dashboards, customer-facing applications, production machine learning models, and ad hoc analytical queries.

The data engineering team has been made aware of new requirements from a customer-facing application, which is the only downstream workload they manage entirely. As a result, an aggregate table used by numerous teams across the organization will need to have a number of fields renamed, and additional fields will also be added.

Which of the solutions addresses the situation while minimally interrupting other teams in the organization without increasing the number of tables that need to be managed?

Options:

A.

Send all users notice that the schema for the table will be changing; include in the communication the logic necessary to revert the new table schema to match historic queries.

B.

Configure a new table with all the requisite fields and new names and use this as the source for the customer-facing application; create a view that maintains the original data schema and table name by aliasing select fields from the new table.

C.

Create a new table with the required schema and new fields and use Delta Lake's deep clone functionality to sync up changes committed to one table to the corresponding table.

D.

Replace the current table definition with a logical view defined with the query logic currently writing the aggregate table; create a new table to power the customer-facing application.

E.

Add a table comment warning all users that the table schema and field names will be changing on a given date; overwrite the table in place to the specifications of the customer-facing application.