Winter Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Databricks Databricks-Machine-Learning-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Machine-Learning-Associate
Exam Name:
Databricks Certified Machine Learning Associate Exam
Certification:
Vendor:
Questions:
74
Last Updated:
Feb 26, 2025
Exam Status:
Stable
Databricks Databricks-Machine-Learning-Associate

Databricks-Machine-Learning-Associate: ML Data Scientist Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Machine-Learning-Associate (Databricks Certified Machine Learning Associate Exam) exam? Download the most recent Databricks Databricks-Machine-Learning-Associate braindumps with answers that are 100% real. After downloading the Databricks Databricks-Machine-Learning-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Machine-Learning-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Machine-Learning-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Machine Learning Associate Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Machine-Learning-Associate test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Machine-Learning-Associate practice exam demo.

Databricks Certified Machine Learning Associate Exam Questions and Answers

Question 1

A data scientist is using MLflow to track their machine learning experiment. As a part of each of their MLflow runs, they are performing hyperparameter tuning. The data scientist would like to have one parent run for the tuning process with a child run for each unique combination of hyperparameter values. All parent and child runs are being manually started with mlflow.start_run.

Which of the following approaches can the data scientist use to accomplish this MLflow run organization?

Options:

A.

Theycan turn on Databricks Autologging

B.

Theycan specify nested=True when startingthe child run for each unique combination of hyperparameter values

C.

Theycan start each child run inside the parentrun's indented code block usingmlflow.start runO

D.

They can start each child run with the same experiment ID as the parent run

E.

They can specify nested=True when starting the parent run for the tuningprocess

Buy Now
Question 2

A data scientist wants to parallelize the training of trees in a gradient boosted tree to speed up the training process. A colleague suggests that parallelizing a boosted tree algorithm can be difficult.

Which of the following describes why?

Options:

A.

Gradient boosting is not a linear algebra-based algorithm which is required for parallelization

B.

Gradient boosting requires access to all data at once which cannot happen during parallelization.

C.

Gradient boosting calculates gradients in evaluation metrics using all cores which prevents parallelization.

D.

Gradient boosting is an iterative algorithm that requires information from the previous iteration to perform the next step.

Question 3

A data scientist is using Spark ML to engineer features for an exploratory machine learning project.

They decide they want to standardize their features using the following code block:

Upon code review, a colleague expressed concern with the features being standardized prior to splitting the data into a training set and a test set.

Which of the following changes can the data scientist make to address the concern?

Options:

A.

Utilize the MinMaxScaler object to standardize the training data according to global minimum and maximum values

B.

Utilize the MinMaxScaler object to standardize the test data according to global minimum and maximum values

C.

Utilize a cross-validation process rather than a train-test split process to remove the need for standardizing data

D.

Utilize the Pipeline API to standardize the training data according to the test data's summary statistics

E.

Utilize the Pipeline API to standardize the test data according to the training data's summary statistics