Black Friday Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Online Databricks-Certified-Professional-Data-Engineer Questions Video

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 33

The marketing team is looking to share data in an aggregate table with the sales organization, but the field names used by the teams do not match, and a number of marketing specific fields have not been approval for the sales org.

Which of the following solutions addresses the situation while emphasizing simplicity?

Options:

A.

Create a view on the marketing table selecting only these fields approved for the sales team alias the names of any fields that should be standardized to the sales naming conventions.

B.

Use a CTAS statement to create a derivative table from the marketing table configure a production jon to propagation changes.

C.

Add a parallel table write to the current production pipeline, updating a new sales table that varies as required from marketing table.

D.

Create a new table with the required schema and use Delta Lake's DEEP CLONE functionality to sync up changes committed to one table to the corresponding table.

Question 34

A data ingestion task requires a one-TB JSON dataset to be written out to Parquet with a target part-file size of 512 MB. Because Parquet is being used instead of Delta Lake, built-in file-sizing features such as Auto-Optimize & Auto-Compaction cannot be used.

Which strategy will yield the best performance without shuffling data?

Options:

A.

Set spark.sql.files.maxPartitionBytes to 512 MB, ingest the data, execute the narrow transformations, and then write to parquet.

B.

Set spark.sql.shuffle.partitions to 2,048 partitions (1TB*1024*1024/512), ingest the data, execute the narrow transformations, optimize the data by sorting it (which automatically repartitions the data), and then write to parquet.

C.

Set spark.sql.adaptive.advisoryPartitionSizeInBytes to 512 MB bytes, ingest the data, execute the narrow transformations, coalesce to 2,048 partitions (1TB*1024*1024/512), and then write to parquet.

D.

Ingest the data, execute the narrow transformations, repartition to 2,048 partitions (1TB* 1024*1024/512), and then write to parquet.

E.

Set spark.sql.shuffle.partitions to 512, ingest the data, execute the narrow transformations, and then write to parquet.

Question 35

A data engineer is performing a join operating to combine values from a static userlookup table with a streaming DataFrame streamingDF.

Which code block attempts to perform an invalid stream-static join?

Options:

A.

userLookup.join(streamingDF, ["userid"], how="inner")

B.

streamingDF.join(userLookup, ["user_id"], how="outer")

C.

streamingDF.join(userLookup, ["user_id”], how="left")

D.

streamingDF.join(userLookup, ["userid"], how="inner")

E.

userLookup.join(streamingDF, ["user_id"], how="right")

Question 36

A junior data engineer is migrating a workload from a relational database system to the Databricks Lakehouse. The source system uses a star schema, leveraging foreign key constrains and multi-table inserts to validate records on write.

Which consideration will impact the decisions made by the engineer while migrating this workload?

Options:

A.

All Delta Lake transactions are ACID compliance against a single table, and Databricks does not enforce foreign key constraints.

B.

Databricks only allows foreign key constraints on hashed identifiers, which avoid collisions in highly-parallel writes.

C.

Foreign keys must reference a primary key field; multi-table inserts must leverage Delta Lake's upsert functionality.

D.

Committing to multiple tables simultaneously requires taking out multiple table locks and can lead to a state of deadlock.