New Year Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

AWS Certified Data Analytics DAS-C01 Dumps PDF

Page: 14 / 15
Total 207 questions

AWS Certified Data Analytics - Specialty Questions and Answers

Question 53

A mortgage company has a microservice for accepting payments. This microservice uses the Amazon DynamoDB encryption client with AWS KMS managed keys to encrypt the sensitive data before writing the data to DynamoDB. The finance team should be able to load this data into Amazon Redshift and aggregate the values within the sensitive fields. The Amazon Redshift cluster is shared with other data analysts from different business units.

Which steps should a data analyst take to accomplish this task efficiently and securely?

Options:

A.

Create an AWS Lambda function to process the DynamoDB stream. Decrypt the sensitive data using the same KMS key. Save the output to a restricted S3 bucket for the finance team. Create a finance table in Amazon Redshift that is accessible to the finance team only. Use the COPY command to load the data from Amazon S3 to the finance table.

B.

Create an AWS Lambda function to process the DynamoDB stream. Save the output to a restricted S3 bucket for the finance team. Create a finance table in Amazon Redshift that is accessible to the finance team only. Use the COPY command with the IAM role that has access to the KMS key to load the data from S3 to the finance table.

C.

Create an Amazon EMR cluster with an EMR_EC2_DefaultRole role that has access to the KMS key. Create Apache Hive tables that reference the data stored in DynamoDB and the finance table in Amazon Redshift. In Hive, select the data from DynamoDB and then insert the output to the finance table in Amazon Redshift.

D.

Create an Amazon EMR cluster. Create Apache Hive tables that reference the data stored in DynamoDB. Insert the output to the restricted Amazon S3 bucket for the finance team. Use the COPY command with the IAM role that has access to the KMS key to load the data from Amazon S3 to the finance table in Amazon Redshift.

Question 54

A company uses Amazon Redshift for its data warehouse. The company is running an ET L process that receives data in data parts from five third-party providers. The data parts contain independent records that are related to one specific job. The company receives the data parts at various times throughout each day.

A data analytics specialist must implement a solution that loads the data into Amazon Redshift only after the company receives all five data parts.

Which solution will meet these requirements?

Options:

A.

Create an Amazon S3 bucket to receive the data. Use S3 multipart upload to collect the data from the different sources andto form a single object before loading the data into Amazon Redshift.

B.

Use an AWS Lambda function that is scheduled by cron to load the data into a temporary table in Amazon Redshift. Use Amazon Redshift database triggers to consolidate the final data when all five data parts are ready.

C.

Create an Amazon S3 bucket to receive the data. Create an AWS Lambda function that is invoked by S3 upload events. Configure the function to validate that all five data parts are gathered before the function loads the data into Amazon Redshift.

D.

Create an Amazon Kinesis Data Firehose delivery stream. Program a Python condition that will invoke a buffer flush when all five data parts are received.

Question 55

An online gaming company is using an Amazon Kinesis Data Analytics SQL application with a Kinesis data stream as its source. The source sends three non-null fields to the application: player_id, score, and us_5_digit_zip_code.

A data analyst has a .csv mapping file that maps a small number of us_5_digit_zip_code values to a territory code. The data analyst needs to include the territory code, if one exists, as an additional output of the Kinesis Data Analytics application.

How should the data analyst meet this requirement while minimizing costs?

Options:

A.

Store the contents of the mapping file in an Amazon DynamoDB table. Preprocess the records as they arrive in the Kinesis Data Analytics application with an AWS Lambda function that fetches the mapping and supplements each record to include the territory code, if one exists. Change the SQL query in the application to include the new field in the SELECT statement.

B.

Store the mapping file in an Amazon S3 bucket and configure the reference data column headers for the

.csv file in the Kinesis Data Analytics application. Change the SQL query in the application to include a join to the file’s S3 Amazon Resource Name (ARN), and add the territory code field to the SELECT columns.

C.

Store the mapping file in an Amazon S3 bucket and configure it as a reference data source for the Kinesis Data Analytics application. Change the SQL query in the application to include a join to the reference table and add the territory code field to the SELECT columns.

D.

Store the contents of the mapping file in an Amazon DynamoDB table. Change the Kinesis Data Analytics application to send its output to an AWS Lambda function that fetches the mapping and supplements each record to include the territory code, if one exists. Forward the record from the Lambda function to the original application destination.

Question 56

A company is creating a data lake by using AWS Lake Formation. The data that will be stored in the data lake contains sensitive customer information and must be encrypted at rest using an AWS Key Management Service (AWS KMS) customer managed key to meet regulatory requirements.

How can the company store the data in the data lake to meet these requirements?

Options:

A.

Store the data in an encrypted Amazon Elastic Block Store (Amazon EBS) volume. Register the Amazon EBS volume with Lake Formation.

B.

Store the data in an Amazon S3 bucket by using server-side encryption with AWS KMS (SSE-KMS). Register the S3 location with Lake Formation.

C.

Encrypt the data on the client side and store the encrypted data in an Amazon S3 bucket. Register the S3 location with Lake Formation.

D.

Store the data in an Amazon S3 Glacier Flexible Retrieval vault bucket. Register the S3 Glacier Flexible Retrieval vault with Lake Formation.

Page: 14 / 15
Total 207 questions