An ecommerce company uses Amazon Aurora PostgreSQL to process and store live transactional data and uses Amazon Redshift for its data warehouse solution. A nightly ET L job has been implemented to update the Redshift cluster with new data from the PostgreSQL database. Thebusiness has grown rapidly and so has the size and cost of the Redshift cluster. The company's data analytics team needs to create a solution to archive historical data and only keep the most recent 12 months of data in Amazon
Redshift to reduce costs. Data analysts should also be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data.
Which combination of tasks will meet these requirements?(Select THREE.)
A large media company is looking for a cost-effective storage and analysis solution for its daily media recordings formatted with embedded metadata. Daily data sizes range between 10-12 TB with stream analysis required on timestamps, video resolutions, file sizes, closed captioning, audio languages, and more. Based on the analysis,
processing the datasets is estimated to take between 30-180 minutes depending on the underlying framework selection. The analysis will be done by using business intelligence (Bl) tools that can be connected to data sources with AWS or Java Database Connectivity (JDBC) connectors.
Which solution meets these requirements?
A network administrator needs to create a dashboard to visualize continuous network patterns over time in a company's AWS account. Currently, the company has VPC Flow Logs enabled and is publishing this data to Amazon CloudWatch Logs. To troubleshoot networking issues quickly, the dashboard needs to display the new data in near-real time.
Which solution meets these requirements?
A company has developed several AWS Glue jobs to validate and transform its data from Amazon S3 and load it into Amazon RDS for MySQL in batches once every day. The ETL jobs read the S3 data using a DynamicFrame. Currently, the ETL developers are experiencing challenges in processing only the incremental data on every run, as the AWS Glue job processes all the S3 input data on each run.
Which approach would allow the developers to solve the issue with minimal coding effort?