A US-based sneaker retail company launched its global website. All the transaction data is stored in Amazon RDS and curated historic transaction data is stored in Amazon Redshift in the us-east-1 Region. The business intelligence (BI) team wants to enhance the user experience by providing a dashboard for sneaker trends.
The BI team decides to use Amazon QuickSight to render the website dashboards. During development, a team in Japan provisioned Amazon QuickSight in ap-northeast-1. The team is having difficulty connecting Amazon QuickSight from ap-northeast-1 to Amazon Redshift in us-east-1.
Which solution will solve this issue and meet the requirements?
A large ride-sharing company has thousands of drivers globally serving millions of unique customers every day. The company has decided to migrate an existing data mart to Amazon Redshift. The existing schema includes the following tables.
A trips fact table for information on completed rides. A drivers dimension table for driver profiles.
A customers fact table holding customer profile information.
The company analyzes trip details by date and destination to examine profitability by region. The drivers data rarely changes. The customers data frequently changes.
What table design provides optimal query performance?
A retail company stores order invoices in an Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster Indices on the cluster are created monthly Once a new month begins, no new writes are made to any of the indices from the previous months The company has been expanding the storage on the Amazon OpenSearch Service {Amazon Elasticsearch Service) cluster to avoid running out of space, but the company wants to reduce costs Most searches on the cluster are on the most recent 3 months of data while the audit team requires infrequent access to older data to generate periodic reports The most recent 3 months of data must be quickly available for queries, but the audit team can tolerate slower queries if the solution saves on cluster costs
Which of the following is the MOST operationally efficient solution to meet these requirements?
A manufacturing company uses Amazon Connect to manage its contact center and Salesforce to manage its customer relationship management (CRM) data. The data engineering team must build a pipeline to ingest data from the contact center and CRM system into a data lake that is built on Amazon S3.
What is the MOST efficient way to collect data in the data lake with the LEAST operational overhead?