Winter Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Legit Databricks-Generative-AI-Engineer-Associate Exam Download

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 9

Generative AI Engineer at an electronics company just deployed a RAG application for customers to ask questions about products that the company carries. However, they received feedback that the RAG response often returns information about an irrelevant product.

What can the engineer do to improve the relevance of the RAG’s response?

Options:

A.

Assess the quality of the retrieved context

B.

Implement caching for frequently asked questions

C.

Use a different LLM to improve the generated response

D.

Use a different semantic similarity search algorithm

Question 10

A small and cost-conscious startup in the cancer research field wants to build a RAG application using Foundation Model APIs.

Which strategy would allow the startup to build a good-quality RAG application while being cost-conscious and able to cater to customer needs?

Options:

A.

Limit the number of relevant documents available for the RAG application to retrieve from

B.

Pick a smaller LLM that is domain-specific

C.

Limit the number of queries a customer can send per day

D.

Use the largest LLM possible because that gives the best performance for any general queries

Question 11

A Generative Al Engineer has created a RAG application to look up answers to questions about a series of fantasy novels that are being asked on the author’s web forum. The fantasy novel texts are chunked and embedded into a vector store with metadata (page number, chapter number, book title), retrieved with the user’s query, and provided to an LLM for response generation. The Generative AI Engineer used their intuition to pick the chunking strategy and associated configurations but now wants to more methodically choose the best values.

Which TWO strategies should the Generative AI Engineer take to optimize their chunking strategy and parameters? (Choose two.)

Options:

A.

Change embedding models and compare performance.

B.

Add a classifier for user queries that predicts which book will best contain the answer. Use this to filter retrieval.

C.

Choose an appropriate evaluation metric (such as recall or NDCG) and experiment with changes in the chunking strategy, such as splitting chunks by paragraphs or chapters.

Choose the strategy that gives the best performance metric.

D.

Pass known questions and best answers to an LLM and instruct the LLM to provide the best token count. Use a summary statistic (mean, median, etc.) of the best token counts to choose chunk size.

E.

Create an LLM-as-a-judge metric to evaluate how well previous questions are answered by the most appropriate chunk. Optimize the chunking parameters based upon the values of the metric.

Question 12

A Generative Al Engineer is responsible for developing a chatbot to enable their company’s internal HelpDesk Call Center team to more quickly find related tickets and provide resolution. While creating the GenAI application work breakdown tasks for this project, they realize they need to start planning which data sources (either Unity Catalog volume or Delta table) they could choose for this application. They have collected several candidate data sources for consideration:

call_rep_history: a Delta table with primary keys representative_id, call_id. This table is maintained to calculate representatives’ call resolution from fields call_duration and call start_time.

transcript Volume: a Unity Catalog Volume of all recordings as a *.wav files, but also a text transcript as *.txt files.

call_cust_history: a Delta table with primary keys customer_id, cal1_id. This table is maintained to calculate how much internal customers use the HelpDesk to make sure that the charge back model is consistent with actual service use.

call_detail: a Delta table that includes a snapshot of all call details updated hourly. It includes root_cause and resolution fields, but those fields may be empty for calls that are still active.

maintenance_schedule – a Delta table that includes a listing of both HelpDesk application outages as well as planned upcoming maintenance downtimes.

They need sources that could add context to best identify ticket root cause and resolution.

Which TWO sources do that? (Choose two.)

Options:

A.

call_cust_history

B.

maintenance_schedule

C.

call_rep_history

D.

call_detail

E.

transcript Volume