Month End Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Databricks Updates

Databricks Certified Associate Developer for Apache Spark 3.0 Exam Questions and Answers

Question 9

Which of the following code blocks reads in the JSON file stored at filePath as a DataFrame?

Options:

A.

spark.read.json(filePath)

B.

spark.read.path(filePath, source="json")

C.

spark.read().path(filePath)

D.

spark.read().json(filePath)

E.

spark.read.path(filePath)

Question 10

The code block shown below should return a new 2-column DataFrame that shows one attribute from column attributes per row next to the associated itemName, for all suppliers in column supplier

whose name includes Sports. Choose the answer that correctly fills the blanks in the code block to accomplish this.

Sample of DataFrame itemsDf:

1.+------+----------------------------------+-----------------------------+-------------------+

2.|itemId|itemName |attributes |supplier |

3.+------+----------------------------------+-----------------------------+-------------------+

4.|1 |Thick Coat for Walking in the Snow|[blue, winter, cozy] |Sports Company Inc.|

5.|2 |Elegant Outdoors Summer Dress |[red, summer, fresh, cooling]|YetiX |

6.|3 |Outdoors Backpack |[green, summer, travel] |Sports Company Inc.|

7.+------+----------------------------------+-----------------------------+-------------------+

Code block:

itemsDf.__1__(__2__).select(__3__, __4__)

Options:

A.

1. filter

2. col("supplier").isin("Sports")

3. "itemName"

4. explode(col("attributes"))

B.

1. where

2. col("supplier").contains("Sports")

3. "itemName"

4. "attributes"

C.

1. where

2. col(supplier).contains("Sports")

3. explode(attributes)

4. itemName

D.

1. where

2. "Sports".isin(col("Supplier"))

3. "itemName"

4. array_explode("attributes")

E.

1. filter

2. col("supplier").contains("Sports")

3. "itemName"

4. explode("attributes")

Question 11

Which of the following code blocks reads in parquet file /FileStore/imports.parquet as a DataFrame?

Options:

A.

spark.mode("parquet").read("/FileStore/imports.parquet")

B.

spark.read.path("/FileStore/imports.parquet", source="parquet")

C.

spark.read().parquet("/FileStore/imports.parquet")

D.

spark.read.parquet("/FileStore/imports.parquet")

E.

spark.read().format('parquet').open("/FileStore/imports.parquet")

Question 12

Which of the following code blocks produces the following output, given DataFrame transactionsDf?

Output:

1.root

2. |-- transactionId: integer (nullable = true)

3. |-- predError: integer (nullable = true)

4. |-- value: integer (nullable = true)

5. |-- storeId: integer (nullable = true)

6. |-- productId: integer (nullable = true)

7. |-- f: integer (nullable = true)

DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.+-------------+---------+-----+-------+---------+----+

Options:

A.

transactionsDf.schema.print()

B.

transactionsDf.rdd.printSchema()

C.

transactionsDf.rdd.formatSchema()

D.

transactionsDf.printSchema()

E.

print(transactionsDf.schema)