Black Friday Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Machine-Learning-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Machine-Learning-Associate
Exam Name:
Databricks Certified Machine Learning Associate Exam
Certification:
Vendor:
Questions:
74
Last Updated:
Nov 24, 2024
Exam Status:
Stable
Databricks Databricks-Machine-Learning-Associate

Databricks-Machine-Learning-Associate: ML Data Scientist Exam 2024 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Machine-Learning-Associate (Databricks Certified Machine Learning Associate Exam) exam? Download the most recent Databricks Databricks-Machine-Learning-Associate braindumps with answers that are 100% real. After downloading the Databricks Databricks-Machine-Learning-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Machine-Learning-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Machine-Learning-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Machine Learning Associate Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Machine-Learning-Associate test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Machine-Learning-Associate practice exam demo.

Databricks Certified Machine Learning Associate Exam Questions and Answers

Question 1

A machine learning engineer has identified the best run from an MLflow Experiment. They have stored the run ID in the run_id variable and identified the logged model name as "model". They now want to register that model in the MLflow Model Registry with the name "best_model".

Which lines of code can they use to register the model associated with run_id to the MLflow Model Registry?

Options:

A.

mlflow.register_model(run_id, "best_model")

B.

mlflow.register_model(f"runs:/{run_id}/model”, "best_model”)

C.

millow.register_model(f"runs:/{run_id)/model")

D.

mlflow.register_model(f"runs:/{run_id}/best_model", "model")

Buy Now
Question 2

A data scientist wants to efficiently tune the hyperparameters of a scikit-learn model. They elect to use the Hyperopt library'sfminoperation to facilitate this process. Unfortunately, the final model is not very accurate. The data scientist suspects that there is an issue with theobjective_functionbeing passed as an argument tofmin.

They use the following code block to create theobjective_function:

Which of the following changes does the data scientist need to make to theirobjective_functionin order to produce a more accurate model?

Options:

A.

Add test set validation process

B.

Add a random_state argument to the RandomForestRegressor operation

C.

Remove the mean operation that is wrapping the cross_val_score operation

D.

Replace the r2 return value with -r2

E.

Replace the fmin operation with the fmax operation

Question 3

A data scientist is using Spark ML to engineer features for an exploratory machine learning project.

They decide they want to standardize their features using the following code block:

Upon code review, a colleague expressed concern with the features being standardized prior to splitting the data into a training set and a test set.

Which of the following changes can the data scientist make to address the concern?

Options:

A.

Utilize the MinMaxScaler object to standardize the training data according to global minimum and maximum values

B.

Utilize the MinMaxScaler object to standardize the test data according to global minimum and maximum values

C.

Utilize a cross-validation process rather than a train-test split process to remove the need for standardizing data

D.

Utilize the Pipeline API to standardize the training data according to the test data's summary statistics

E.

Utilize the Pipeline API to standardize the test data according to the training data's summary statistics