New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free and Premium Amazon Web Services AIF-C01 Dumps Questions Answers

Page: 1 / 20
Total 289 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

How can companies use large language models (LLMs) securely on Amazon Bedrock?

Options:

A.

Design clear and specific prompts. Configure AWS Identity and Access Management (IAM) roles and policies by using least privilege access.

B.

Enable AWS Audit Manager for automatic model evaluation jobs.

C.

Enable Amazon Bedrock automatic model evaluation jobs.

D.

Use Amazon CloudWatch Logs to make models explainable and to monitor for bias.

Buy Now
Question 2

A company wants to make a chatbot to help customers. The chatbot will help solve technical problems without human intervention. The company chose a foundation model (FM) for the chatbot. The chatbot needs to produce responses that adhere to company tone.

Which solution meets these requirements?

Options:

A.

Set a low limit on the number of tokens the FM can produce.

B.

Use batch inferencing to process detailed responses.

C.

Experiment and refine the prompt until the FM produces the desired responses.

D.

Define a higher number for the temperature parameter.

Question 3

A company needs to apply numerical transformations to a set of images to transpose and rotate the images.

Options:

A.

Create a deep neural network by using the images as input.

B.

Create an AWS Lambda function to perform the transformations.

C.

Use an Amazon Bedrock large language model (LLM) with a high temperature.

D.

Use AWS Glue Data Quality to make corrections to each image.

Question 4

What does an F1 score measure in the context of foundation model (FM) performance?

Options:

A.

Model precision and recall.

B.

Model speed in generating responses.

C.

Financial cost of operating the model.

D.

Energy efficiency of the model's computations.

Question 5

A company wants to identify harmful language in the comments section of social media posts by using an ML model. The company will not use labeled data to train the model. Which strategy should the company use to identify harmful language?

Options:

A.

Use Amazon Rekognition moderation.

B.

Use Amazon Comprehend toxicity detection.

C.

Use Amazon SageMaker AI built-in algorithms to train the model.

D.

Use Amazon Polly to monitor comments.

Question 6

A company wants to use generative AI to increase developer productivity and software development. The company wants to use Amazon Q Developer.

What can Amazon Q Developer do to help the company meet these requirements?

Options:

A.

Create software snippets, reference tracking, and open-source license tracking.

B.

Run an application without provisioning or managing servers.

C.

Enable voice commands for coding and providing natural language search.

D.

Convert audio files to text documents by using ML models.

Question 7

A company has installed a security camera. The company uses an ML model to evaluate the security camera footage for potential thefts. The company has discovered that the model disproportionately flags people who are members of a specific ethnic group.

Which type of bias is affecting the model output?

Options:

A.

Measurement bias

B.

Sampling bias

C.

Observer bias

D.

Confirmation bias

Question 8

A company wants to develop a large language model (LLM) application by using Amazon Bedrock and customer data that is uploaded to Amazon S3. The company's security policy states that each team can access data for only the team's own customers.

Which solution will meet these requirements?

Options:

A.

Create an Amazon Bedrock custom service role for each team that has access to only the team's customer data.

B.

Create a custom service role that has Amazon S3 access. Ask teams to specify the customer name on each Amazon Bedrock request.

C.

Redact personal data in Amazon S3. Update the S3 bucket policy to allow team access to customer data.

D.

Create one Amazon Bedrock role that has full Amazon S3 access. Create IAM roles for each team that have access to only each team's customer folders.

Question 9

A bank is building a chatbot to answer customer questions about opening a bank account. The chatbot will use public bank documents to generate responses. The company will use Amazon Bedrock and prompt engineering to improve the chatbot's responses.

Which prompt engineering technique meets these requirements?

Options:

A.

Complexity-based prompting

B.

Zero-shot prompting

C.

Few-shot prompting

D.

Directional stimulus prompting

Question 10

An education provider is building a question and answer application that uses a generative AI model to explain complex concepts. The education provider wants to automatically change the style of the model response depending on who is asking the question. The education provider will give the model the age range of the user who has asked the question.

Which solution meets these requirements with the LEAST implementation effort?

Options:

A.

Fine-tune the model by using additional training data that is representative of the various age ranges that the application will support.

B.

Add a role description to the prompt context that instructs the model of the age range that the response should target.

C.

Use chain-of-thought reasoning to deduce the correct style and complexity for a response suitable for that user.

D.

Summarize the response text depending on the age of the user so that younger users receive shorter responses.

Question 11

A company is building a chatbot to improve user experience. The company is using a large language model (LLM) from Amazon Bedrock for intent detection. The company wants to use few-shot learning to improve intent detection accuracy.

Which additional data does the company need to meet these requirements?

Options:

A.

Pairs of chatbot responses and correct user intents

B.

Pairs of user messages and correct chatbot responses

C.

Pairs of user messages and correct user intents

D.

Pairs of user intents and correct chatbot responses

Question 12

A company has an ML model. The company wants to know how the model makes predictions. Which term refers to understanding model predictions?

Options:

A.

Model interpretability

B.

Model training

C.

Model interoperability

D.

Model performance

Question 13

A company has documents that are missing some words because of a database error. The company wants to build an ML model that can suggest potential words to fill in the missing text.

Which type of model meets this requirement?

Options:

A.

Topic modeling

B.

Clustering models

C.

Prescriptive ML models

D.

BERT-based models

Question 14

A company wants to build a lead prioritization application for its employees to contact potential customers. The application must give employees the ability to view and adjust the weights assigned to different variables in the model based on domain knowledge and expertise.

Which ML model type meets these requirements?

Options:

A.

Logistic regression model

B.

Deep learning model built on principal components

C.

K-nearest neighbors (k-NN) model

D.

Neural network

Question 15

A company wants to use AI to protect its application from threats. The AI solution needs to check if an IP address is from a suspicious source.

Options:

A.

Build a speech recognition system.

B.

Create a natural language processing (NLP) named entity recognition system.

C.

Develop an anomaly detection system.

D.

Create a fraud forecasting system.

Question 16

HOTSPOT

Select the correct AI term from the following list for each statement. Each AI term should be selected one time. (Select THREE.)

• AI

• Deep learning

• ML

Options:

Question 17

A company is building a contact center application and wants to gain insights from customer conversations. The company wants to analyze and extract key information from the audio of the customer calls.

Which solution meets these requirements?

Options:

A.

Build a conversational chatbot by using Amazon Lex.

B.

Transcribe call recordings by using Amazon Transcribe.

C.

Extract information from call recordings by using Amazon SageMaker Model Monitor.

D.

Create classification labels by using Amazon Comprehend.

Question 18

A company manually reviews all submitted resumes in PDF format. As the company grows, the company expects the volume of resumes to exceed the company's review capacity. The company needs an automated system to convert the PDF resumes into plain text format for additional processing.

Which AWS service meets this requirement?

Options:

A.

Amazon Textract

B.

Amazon Personalize

C.

Amazon Lex

D.

Amazon Transcribe

Question 19

A company is developing an editorial assistant application that uses generative AI. During the pilot phase, usage is low and application performance is not a concern. The company cannot predict application usage after the application is fully deployed and wants to minimize application costs.

Which solution will meet these requirements?

Options:

A.

Use GPU-powered Amazon EC2 instances.

B.

Use Amazon Bedrock with Provisioned Throughput.

C.

Use Amazon Bedrock with On-Demand Throughput.

D.

Use Amazon SageMaker JumpStart.

Question 20

A publishing company built a Retrieval Augmented Generation (RAG) based solution to give its users the ability to interact with published content. New content is published daily. The company wants to provide a near real-time experience to users.

Which steps in the RAG pipeline should the company implement by using offline batch processing to meet these requirements? (Select TWO.)

Options:

A.

Generation of content embeddings

B.

Generation of embeddings for user queries

C.

Creation of the search index

D.

Retrieval of relevant content

E.

Response generation for the user

Question 21

A company has developed a generative text summarization application by using Amazon Bedrock. The company will use Amazon Bedrock automatic model evaluation capabilities.

Which metric should the company use to evaluate the accuracy of the model?

Options:

A.

Area Under the ROC Curve (AUC) score

B.

F1 score

C.

BERT Score

D.

Real World Knowledge (RWK) score

Question 22

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company wants to know how much information can fit into one prompt.

Which consideration will inform the company's decision?

Options:

A.

Temperature

B.

Context window

C.

Batch size

D.

Model size

Question 23

An AI practitioner who has minimal ML knowledge wants to predict employee attrition without writing code. Which Amazon SageMaker feature meets this requirement?

Options:

A.

SageMaker Canvas

B.

SageMaker Clarify

C.

SageMaker Model Monitor

D.

SageMaker Data Wrangler

Question 24

A company wants to use AI to protect its application from threats. The AI solution needs to check if an IP address is from a suspicious source.

Which solution meets these requirements?

Options:

A.

Build a speech recognition system.

B.

Create a natural language processing (NLP) named entity recognition system.

C.

Develop an anomaly detection system.

D.

Create a fraud forecasting system.

Question 25

A company wants to enhance response quality for a large language model (LLM) for complex problem-solving tasks. The tasks require detailed reasoning and a step-by-step explanation process.

Which prompt engineering technique meets these requirements?

Options:

A.

Few-shot prompting

B.

Zero-shot prompting

C.

Directional stimulus prompting

D.

Chain-of-thought prompting

Question 26

A company is using large language models (LLMs) to develop online tutoring applications. The company needs to apply configurable safeguards to the LLMs. These safeguards must ensure that the LLMs follow standard safety rules when creating applications.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Amazon Bedrock playgrounds

B.

Amazon SageMaker Clarify

C.

Amazon Bedrock Guardrails

D.

Amazon SageMaker JumpStart

Question 27

Which option is an example of unsupervised learning?

Options:

A.

Clustering data points into groups based on their similarity

B.

Training a model to recognize images of animals

C.

Predicting the price of a house based on the house's features

D.

Generating human-like text based on a given prompt

Question 28

A company wants to build an interactive application for children that generates new stories based on classic stories. The company wants to use Amazon Bedrock and needs to ensure that the results and topics are appropriate for children.

Which AWS service or feature will meet these requirements?

Options:

A.

Amazon Rekognition

B.

Amazon Bedrock playgrounds

C.

Guardrails for Amazon Bedrock

D.

Agents for Amazon Bedrock

Question 29

A company is monitoring a predictive model by using Amazon SageMaker Model Monitor. The company notices data drift beyond a defined threshold. The company wants to mitigate a potentially adverse impact on the predictive model.

Options:

A.

Restart the SageMaker AI endpoint.

B.

Adjust the monitoring sensitivity.

C.

Re-train the model with fresh data.

D.

Set up experiments tracking.

Question 30

A company has a generative AI application that uses a pre-trained foundation model (FM) on Amazon Bedrock. The company wants the FM to include more context by using company information.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Use Amazon Bedrock Knowledge Bases.

B.

Choose a different FM on Amazon Bedrock.

C.

Use Amazon Bedrock Agents.

D.

Deploy a custom model on Amazon Bedrock.

Question 31

A company wants to develop a solution that uses generative AI to create content for product advertisements, Including sample images and slogans.

Select the correct model type from the following list for each action. Each model type should be selected one time. (Select THREE.)

• Diffusion model

• Object detection model

• Transformer-based model

Options:

Question 32

A company wants to deploy a conversational chatbot to answer customer questions. The chatbot is based on a fine-tuned Amazon SageMaker JumpStart model. The application must comply with multiple regulatory frameworks.

Which capabilities can the company show compliance for? (Select TWO.)

Options:

A.

Auto scaling inference endpoints

B.

Threat detection

C.

Data protection

D.

Cost optimization

E.

Loosely coupled microservices

Question 33

A company is using a pre-trained large language model (LLM) to build a chatbot for product recommendations. The company needs the LLM outputs to be short and written in a specific language.

Which solution will align the LLM response quality with the company's expectations?

Options:

A.

Adjust the prompt.

B.

Choose an LLM of a different size.

C.

Increase the temperature.

D.

Increase the Top K value.

Question 34

A financial institution is using Amazon Bedrock to develop an AI application. The application is hosted in a VPC. To meet regulatory compliance standards, the VPC is not allowed access to any internet traffic.

Which AWS service or feature will meet these requirements?

Options:

A.

AWS PrivateLink

B.

Amazon Macie

C.

Amazon CloudFront

D.

Internet gateway

Question 35

What does an F1 score measure in the context of foundation model (FM) performance?

Options:

A.

Model precision and recall

B.

Model speed in generating responses

C.

Financial cost of operating the model

D.

Energy efficiency of the model's computations

Question 36

Which option is a benefit of ongoing pre-training when fine-tuning a foundation model (FM)?

Options:

A.

Helps decrease the model's complexity

B.

Improves model performance over time

C.

Decreases the training time requirement

D.

Optimizes model inference time

Question 37

A company is training a foundation model (FM). The company wants to increase the accuracy of the model up to a specific acceptance level.

Which solution will meet these requirements?

Options:

A.

Decrease the batch size.

B.

Increase the epochs.

C.

Decrease the epochs.

D.

Increase the temperature parameter.

Question 38

A pharmaceutical company wants to analyze user reviews of new medications and provide a concise overview for each medication. Which solution meets these requirements?

Options:

A.

Create a time-series forecasting model to analyze the medication reviews by using Amazon Personalize.

B.

Create medication review summaries by using Amazon Bedrock large language models (LLMs).

C.

Create a classification model that categorizes medications into different groups by using Amazon SageMaker.

D.

Create medication review summaries by using Amazon Rekognition.

Question 39

A loan company is building a generative AI-based solution to offer new applicants discounts based on specific business criteria. The company wants to build and use an AI model responsibly to minimize bias that could negatively affect some customers.

Which actions should the company take to meet these requirements? (Select TWO.)

Options:

A.

Detect imbalances or disparities in the data.

B.

Ensure that the model runs frequently.

C.

Evaluate the model's behavior so that the company can provide transparency to stakeholders.

D.

Use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) technique to ensure that the model is 100% accurate.

E.

Ensure that the model's inference time is within the accepted limits.

Question 40

A financial company is developing a generative AI application for loan approval decisions. The company needs the application output to be responsible and fair.

Options:

A.

Review the training data to check for biases. Include data from all demographics in the training data.

B.

Use a deep learning model with many hidden layers.

C.

Keep the model's decision-making process a secret to protect proprietary algorithms.

D.

Continuously monitor the model's performance on a static test dataset.

Question 41

A company has built a solution by using generative AI. The solution uses large language models (LLMs) to translate training manuals from English into other languages. The company wants to evaluate the accuracy of the solution by examining the text generated for the manuals.

Which model evaluation strategy meets these requirements?

Options:

A.

Bilingual Evaluation Understudy (BLEU)

B.

Root mean squared error (RMSE)

C.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

D.

F1 score

Question 42

A company wants to improve multiple ML models.

Select the correct technique from the following list of use cases. Each technique should be selected one time or not at all. (Select THREE.)

Few-shot learning

Fine-tuning

Retrieval Augmented Generation (RAG)

Zero-shot learning

Options:

Question 43

A company has built a chatbot that can respond to natural language questions with images. The company wants to ensure that the chatbot does not return inappropriate or unwanted images.

Which solution will meet these requirements?

Options:

A.

Implement moderation APIs.

B.

Retrain the model with a general public dataset.

C.

Perform model validation.

D.

Automate user feedback integration.

Question 44

A company wants to generate synthetic data responses for multiple prompts from a large volume of data. The company wants to use an API method to generate the responses. The company does not need to generate the responses immediately.

Options:

A.

Input the prompts into the model. Generate responses by using real-time inference.

B.

Use Amazon Bedrock batch inference. Generate responses asynchronously.

C.

Use Amazon Bedrock agents. Build an agent system to process the prompts recursively.

D.

Use AWS Lambda functions to automate the task. Submit one prompt after another and store each response.

Question 45

A company has a foundation model (FM) that was customized by using Amazon Bedrock to answer customer queries about products. The company wants to validate the model's responses to new types of queries. The company needs to upload a new dataset that Amazon Bedrock can use for validation.

Which AWS service meets these requirements?

Options:

A.

Amazon S3

B.

Amazon Elastic Block Store (Amazon EBS)

C.

Amazon Elastic File System (Amazon EFS)

D.

AWS Showcone

Question 46

Which option is an example of unsupervised learning?

Options:

A.

A model that groups customers based on their purchase history

B.

A model that classifies images as dogs or cats

C.

A model that predicts a house's price based on various features

D.

A model that learns to play chess by using trial and error

Question 47

A company has developed an ML model for image classification. The company wants to deploy the model to production so that a web application can use the model.

The company needs to implement a solution to host the model and serve predictions without managing any of the underlying infrastructure.

Which solution will meet these requirements?

Options:

A.

Use Amazon SageMaker Serverless Inference to deploy the model.

B.

Use Amazon CloudFront to deploy the model.

C.

Use Amazon API Gateway to host the model and serve predictions.

D.

Use AWS Batch to host the model and serve predictions.

Question 48

A large retailer receives thousands of customer support inquiries about products every day. The customer support inquiries need to be processed and responded to quickly. The company wants to implement Agents for Amazon Bedrock.

What are the key benefits of using Amazon Bedrock agents that could help this retailer?

Options:

A.

Generation of custom foundation models (FMs) to predict customer needs

B.

Automation of repetitive tasks and orchestration of complex workflows

C.

Automatically calling multiple foundation models (FMs) and consolidating the results

D.

Selecting the foundation model (FM) based on predefined criteria and metrics

Question 49

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company wants to know how much information can fit into one prompt.

Which consideration will inform the company's decision?

Options:

A.

Temperature

B.

Context window

C.

Batch size

D.

Model size

Question 50

A security company is using Amazon Bedrock to run foundation models (FMs). The company wants to ensure that only authorized users invoke the models. The company needs to identify any unauthorized access attempts to set appropriate AWS Identity and Access Management (IAM) policies and roles for future iterations of the FMs.

Which AWS service should the company use to identify unauthorized users that are trying to access Amazon Bedrock?

Options:

A.

AWS Audit Manager

B.

AWS CloudTrail

C.

Amazon Fraud Detector

D.

AWS Trusted Advisor

Question 51

Which term refers to the Instructions given to foundation models (FMs) so that the FMs provide a more accurate response to a question?

Options:

A.

Prompt

B.

Direction

C.

Dialog

D.

Translation

Question 52

A company wants to use AWS services to build an AI assistant for internal company use. The AI assistant's responses must reference internal documentation. The company stores internal documentation as PDF, CSV, and image files.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon SageMaker AI to fine-tune a model.

B.

Use Amazon Bedrock Knowledge Bases to create a knowledge base.

C.

Configure a guardrail in Amazon Bedrock Guardrails.

D.

Select a pre-trained model from Amazon SageMaker JumpStart.

Question 53

An ecommerce company is using a chatbot to automate the customer order submission process. The chatbot is powered by AI and Is available to customers directly from the company's website 24 hours a day, 7 days a week.

Which option is an AI system input vulnerability that the company needs to resolve before the chatbot is made available?

Options:

A.

Data leakage

B.

Prompt injection

C.

Large language model (LLM) hallucinations

D.

Concept drift

Question 54

Which THREE of the following principles of responsible AI are most critical to this scenario? (Choose 3)

* Explainability

* Fairness

* Privacy and security

* Robustness

* Safety

Options:

Question 55

A digital devices company wants to predict customer demand for memory hardware. The company does not have coding experience or knowledge of ML algorithms and needs to develop a data-driven predictive model. The company needs to perform analysis on internal data and external data.

Which solution will meet these requirements?

Options:

A.

Store the data in Amazon S3. Create ML models and demand forecast predictions by using Amazon SageMaker built-in algorithms that use the data from Amazon S3.

B.

Import the data into Amazon SageMaker Data Wrangler. Create ML models and demand forecast predictions by using SageMaker built-in algorithms.

C.

Import the data into Amazon SageMaker Data Wrangler. Build ML models and demand forecast predictions by using an Amazon Personalize Trending-Now recipe.

D.

Import the data into Amazon SageMaker Canvas. Build ML models and demand forecast predictions by selecting the values in the data from SageMaker Canvas.

Question 56

A media company wants to analyze viewer behavior and demographics to recommend personalized content. The company wants to deploy a customized ML model in its production environment. The company also wants to observe if the model quality drifts over time.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon Rekognition

B.

Amazon SageMaker Clarify

C.

Amazon Comprehend

D.

Amazon SageMaker Model Monitor

Question 57

A company is using Amazon SageMaker Studio notebooks to build and train ML models. The company stores the data in an Amazon S3 bucket. The company needs to manage the flow of data from Amazon S3 to SageMaker Studio notebooks.

Which solution will meet this requirement?

Options:

A.

Use Amazon Inspector to monitor SageMaker Studio.

B.

Use Amazon Macie to monitor SageMaker Studio.

C.

Configure SageMaker to use a VPC with an S3 endpoint.

D.

Configure SageMaker to use S3 Glacier Deep Archive.

Question 58

Sated and order the steps from the following bat to correctly describe the ML Lifecycle for a new custom modal Select each step one time. (Select and order FOUR.)

• Define the business objective.

• Deploy the modal.

• Develop and tram the model.

• Process the data.

Options:

Question 59

Which scenario represents a practical use case for generative AI?

Options:

A.

Using an ML model to forecast product demand

B.

Employing a chatbot to provide human-like responses to customer queries in real time

C.

Using an analytics dashboard to track website traffic and user behavior

D.

Implementing a rule-based recommendation engine to suggest products to customers

Question 60

A financial institution is using Amazon Bedrock to develop an AI application. The application is hosted in a VPC. To meet regulatory compliance standards, the VPC is not allowed access to any internet traffic.

Which AWS service or feature will meet these requirements?

Options:

A.

AWS PrivateLink

B.

Amazon Macie

C.

Amazon CloudFront

D.

Internet gateway

Question 61

A company has developed a large language model (LLM) and wants to make the LLM available to multiple internal teams. The company needs to select the appropriate inference mode for each team.

Select the correct inference mode from the following list for each use case. Each inference mode should be selected one or more times. (Select THREE.)

* Batch transform

* Real-time inference

Options:

Question 62

A company is implementing intelligent agents to provide conversational search experiences for its customers. The company needs a database service that will support storage and queries of embeddings from a generative AI model as vectors in the database.

Which AWS service will meet these requirements?

Options:

A.

Amazon Athena

B.

Amazon Aurora PostgreSQL

C.

Amazon Redshift

D.

Amazon EMR

Question 63

A financial company is using ML to help with some of the company's tasks.

Which option is a use of generative AI models?

Options:

A.

Summarizing customer complaints

B.

Classifying customers based on product usage

C.

Segmenting customers based on type of investments

D.

Forecasting revenue for certain products

Question 64

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company needs the LLM to produce more consistent responses to the same input prompt.

Which adjustment to an inference parameter should the company make to meet these requirements?

Options:

A.

Decrease the temperature value

B.

Increase the temperature value

C.

Decrease the length of output tokens

D.

Increase the maximum generation length

Question 65

A company is using an Amazon Nova Canvas model to generate images. The model generates images successfully. The company needs to prevent the model from including specific items in the generated images.

Which solution will meet this requirement?

Options:

A.

Use a higher temperature value.

B.

Use a more detailed prompt.

C.

Use a negative prompt.

D.

Use another foundation model (FM).

Question 66

A company built a deep learning model for object detection and deployed the model to production.

Which AI process occurs when the model analyzes a new image to identify objects?

Options:

A.

Training

B.

Inference

C.

Model deployment

D.

Bias correction

Question 67

A healthcare company wants to create a model to improve disease diagnostics by analyzing patient voices. The company has recorded hundreds of patient voices for this project. The company is currently filtering voice recordings according to duration and language.

Options:

A.

Data collection

B.

Data preprocessing

C.

Feature engineering

D.

Model training

Question 68

A company wants to use Amazon Q Business for its data. The company needs to ensure the security and privacy of the data. Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Enable AWS Key Management Service (AWS KMS) keys for the Amazon Q Business Enterprise index.

B.

Set up cross-account access to the Amazon Q index.

C.

Configure Amazon Inspector for authentication.

D.

Allow public access to the Amazon Q index.

E.

Configure AWS Identity and Access Management (IAM) for authentication.

Question 69

A company is implementing the Amazon Titan foundation model (FM) by using Amazon Bedrock. The company needs to supplement the model by using relevant data from the company's private data sources.

Which solution will meet this requirement?

Options:

A.

Use a different FM

B.

Choose a lower temperature value

C.

Create an Amazon Bedrock knowledge base

D.

Enable model invocation logging

Question 70

An AI practitioner must fine-tune an open source large language model (LLM) for text categorization. The dataset is already prepared.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Create a custom model training job in PartyRock on Amazon Bedrock.

B.

Use Amazon SageMaker JumpStart to create a training job.

C.

Use a custom script to run an Amazon SageMaker AI model training job.

D.

Create a Jupyter notebook on an Amazon EC2 instance. Use the notebook to train the model.

Question 71

A company is developing an ML model to predict customer churn.

Which evaluation metric will assess the model's performance on a binary classification task such as predicting chum?

Options:

A.

F1 score

B.

Mean squared error (MSE)

C.

R-squared

D.

Time used to train the model

Question 72

A company wants to collaborate with several research institutes to develop an AI model. The company needs standardized documentation of model version tracking and a record of model development.

Which solution meets these requirements?

Options:

A.

Track the model changes by using Git.

B.

Track the model changes by using Amazon Fraud Detector.

C.

Track the model changes by using Amazon SageMaker Model Cards.

D.

Track the model changes by using Amazon Comprehend.

Question 73

A company has created a custom model by fine-tuning an existing large language model (LLM) from Amazon Bedrock. The company wants to deploy the model to production and use the model to handle a steady rate of requests each minute.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Deploy the model by using an Amazon EC2 compute optimized instance.

B.

Use the model with on-demand throughput on Amazon Bedrock.

C.

Store the model in Amazon S3 and host the model by using AWS Lambda.

D.

Purchase Provisioned Throughput for the model on Amazon Bedrock.

Question 74

A company that uses multiple ML models wants to identify changes in original model quality so that the company can resolve any issues.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon SageMaker JumpStart

B.

Amazon SageMaker HyperPod

C.

Amazon SageMaker Data Wrangler

D.

Amazon SageMaker Model Monitor

Question 75

An ecommerce company is deploying a chatbot. The chatbot will give users the ability to ask questions about the company's products and receive details on users' orders. The company must implement safeguards for the chatbot to filter harmful content from the input prompts and chatbot responses.

Which AWS feature or resource meets these requirements?

Options:

A.

Amazon Bedrock Guardrails

B.

Amazon Bedrock Agents

C.

Amazon Bedrock inference APIs

D.

Amazon Bedrock custom models

Question 76

A company wants to create an application to summarize meetings by using meeting audio recordings.

Select and order the correct steps from the following list to create the application. Each step should be selected one time or not at all. (Select and order THREE.)

• Convert meeting audio recordings to meeting text files by using Amazon Polly.

• Convert meeting audio recordings to meeting text files by using Amazon Transcribe.

• Store meeting audio recordings in an Amazon S3 bucket.

• Store meeting audio recordings in an Amazon Elastic Block Store (Amazon EBS) volume.

• Summarize meeting text files by using Amazon Bedrock.

• Summarize meeting text files by using Amazon Lex.

Options:

Question 77

An online media streaming company wants to give its customers the ability to perform natural language-based image search and filtering. The company needs a vector database that can help with similarity searches and nearest neighbor queries.

Which AWS service meets these requirements?

Options:

A.

Amazon Comprehend

B.

Amazon Personalize

C.

Amazon Polly

D.

Amazon OpenSearch Service

Question 78

A financial company has offices in different countries worldwide. The company requires that all API calls between generative AI applications and foundation models (FM) must not travel across the public internet.

Which AWS service should the company use?

Options:

A.

AWS PrivateLink

B.

Amazon

C.

Amazon CloudFront

D.

AWS CloudTrail

Question 79

An ecommerce company is deploying a chatbot. The chatbot will give users the ability to ask questions about the company's products and receive details on users' orders. The company must implement safeguards for the chatbot to filter harmful content from the input prompts and chatbot responses.

Which AWS feature or resource meets these requirements?

Options:

A.

Amazon Bedrock Guardrails

B.

Amazon Bedrock Agents

C.

Amazon Bedrock inference APIs

D.

Amazon Bedrock custom models

Page: 1 / 20
Total 289 questions