Summer Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Free and Premium Amazon Web Services AIF-C01 Dumps Questions Answers

Page: 1 / 13
Total 177 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

An AI practitioner is developing a prompt for an Amazon Titan model. The model is hosted on Amazon Bedrock. The AI practitioner is using the model to solve numerical reasoning challenges. The AI practitioner adds the following phrase to the end of the prompt: "Ask the model to show its work by explaining its reasoning step by step."

Which prompt engineering technique is the AI practitioner using?

Options:

A.

Chain-of-thought prompting

B.

Prompt injection

C.

Few-shot prompting

D.

Prompt templating

Buy Now
Question 2

A company is using domain-specific models. The company wants to avoid creating new models from the beginning. The company instead wants to adapt pre-trained models to create models for new, related tasks.

Which ML strategy meets these requirements?

Options:

A.

Increase the number of epochs.

B.

Use transfer learning.

C.

Decrease the number of epochs.

D.

Use unsupervised learning.

Question 3

Why does overfilting occur in ML models?

Options:

A.

The training dataset does not reptesent all possible input values.

B.

The model contains a regularization method.

C.

The model training stops early because of an early stopping criterion.

D.

The training dataset contains too many features.

Question 4

A company is using a pre-trained large language model (LLM) to build a chatbot for product recommendations. The company needs the LLM outputs to be short and written in a specific language.

Which solution will align the LLM response quality with the company's expectations?

Options:

A.

Adjust the prompt.

B.

Choose an LLM of a different size.

C.

Increase the temperature.

D.

Increase the Top K value.

Question 5

A company wants to use large language models (LLMs) with Amazon Bedrock to develop a chat interface for the company's product manuals. The manuals are stored as PDF files.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Use prompt engineering to add one PDF file as context to the user prompt when the prompt is submitted to Amazon Bedrock.

B.

Use prompt engineering to add all the PDF files as context to the user prompt when the prompt is submitted to Amazon Bedrock.

C.

Use all the PDF documents to fine-tune a model with Amazon Bedrock. Use the fine-tuned model to process user prompts.

D.

Upload PDF documents to an Amazon Bedrock knowledge base. Use the knowledge base to provide context when users submit prompts to Amazon Bedrock.

Question 6

A financial company is developing a fraud detection system that flags potential fraud cases in credit card transactions. Employees will evaluate the flagged fraud cases. The company wants to minimize the amount of time the employees spend reviewing flagged fraud cases that are not actually fraudulent.

Which evaluation metric meets these requirements?

Options:

A.

Recall

B.

Accuracy

C.

Precision

D.

Lift chart

Question 7

Which option is a benefit of ongoing pre-training when fine-tuning a foundation model (FM)?

Options:

A.

Helps decrease the model's complexity

B.

Improves model performance over time

C.

Decreases the training time requirement

D.

Optimizes model inference time

Question 8

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company wants to classify the sentiment of text passages as positive or negative.

Which prompt engineering strategy meets these requirements?

Options:

A.

Provide examples of text passages with corresponding positive or negative labels in the prompt followed by the new text passage to be classified.

B.

Provide a detailed explanation of sentiment analysis and how LLMs work in the prompt.

C.

Provide the new text passage to be classified without any additional context or examples.

D.

Provide the new text passage with a few examples of unrelated tasks, such as text summarization or question answering.

Question 9

A company is building a solution to generate images for protective eyewear. The solution must have high accuracy and must minimize the risk of incorrect annotations.

Which solution will meet these requirements?

Options:

A.

Human-in-the-loop validation by using Amazon SageMaker Ground Truth Plus

B.

Data augmentation by using an Amazon Bedrock knowledge base

C.

Image recognition by using Amazon Rekognition

D.

Data summarization by using Amazon QuickSight

Question 10

A financial institution is building an AI solution to make loan approval decisions by using a foundation model (FM). For security and audit purposes, the company needs the AI solution's decisions to be explainable.

Which factor relates to the explainability of the AI solution's decisions?

Options:

A.

Model complexity

B.

Training time

C.

Number of hyperparameters

D.

Deployment time

Question 11

A company has built an image classification model to predict plant diseases from photos of plant leaves. The company wants to evaluate how many images the model classified correctly.

Which evaluation metric should the company use to measure the model's performance?

Options:

A.

R-squared score

B.

Accuracy

C.

Root mean squared error (RMSE)

D.

Learning rate

Question 12

A publishing company built a Retrieval Augmented Generation (RAG) based solution to give its users the ability to interact with published content. New content is published daily. The company wants to provide a near real-time experience to users.

Which steps in the RAG pipeline should the company implement by using offline batch processing to meet these requirements? (Select TWO.)

Options:

A.

Generation of content embeddings

B.

Generation of embeddings for user queries

C.

Creation of the search index

D.

Retrieval of relevant content

E.

Response generation for the user

Question 13

A company wants to build an ML application.

Select and order the correct steps from the following list to develop a well-architected ML workload. Each step should be selected one time. (Select and order FOUR.)

• Deploy model

• Develop model

• Monitor model

• Define business goal and frame ML problem

Options:

Question 14

A company is building a large language model (LLM) question answering chatbot. The company wants to decrease the number of actions call center employees need to take to respond to customer questions.

Which business objective should the company use to evaluate the effect of the LLM chatbot?

Options:

A.

Website engagement rate

B.

Average call duration

C.

Corporate social responsibility

D.

Regulatory compliance

Question 15

A company has a database of petabytes of unstructured data from internal sources. The company wants to transform this data into a structured format so that its data scientists can perform machine learning (ML) tasks.

Which service will meet these requirements?

Options:

A.

Amazon Lex

B.

Amazon Rekognition

C.

Amazon Kinesis Data Streams

D.

AWS Glue

Question 16

A company wants to develop a large language model (LLM) application by using Amazon Bedrock and customer data that is uploaded to Amazon S3. The company's security policy states that each team can access data for only the team's own customers.

Which solution will meet these requirements?

Options:

A.

Create an Amazon Bedrock custom service role for each team that has access to only the team's customer data.

B.

Create a custom service role that has Amazon S3 access. Ask teams to specify the customer name on each Amazon Bedrock request.

C.

Redact personal data in Amazon S3. Update the S3 bucket policy to allow team access to customer data.

D.

Create one Amazon Bedrock role that has full Amazon S3 access. Create IAM roles for each team that have access to only each team's customer folders.

Question 17

A company wants to create a chatbot that answers questions about human resources policies. The company is using a large language model (LLM) and has a large digital documentation base.

Which technique should the company use to optimize the generated responses?

Options:

A.

Use Retrieval Augmented Generation (RAG).

B.

Use few-shot prompting.

C.

Set the temperature to 1.

D.

Decrease the token size.

Question 18

A company makes forecasts each quarter to decide how to optimize operations to meet expected demand. The company uses ML models to make these forecasts.

An AI practitioner is writing a report about the trained ML models to provide transparency and explainability to company stakeholders.

What should the AI practitioner include in the report to meet the transparency and explainability requirements?

Options:

A.

Code for model training

B.

Partial dependence plots (PDPs)

C.

Sample data for training

D.

Model convergence tables

Question 19

Which option is a characteristic of AI governance frameworks for building trust and deploying human-centered AI technologies?

Options:

A.

Expanding initiatives across business units to create long-term business value

B.

Ensuring alignment with business standards, revenue goals, and stakeholder expectations

C.

Overcoming challenges to drive business transformation and growth

D.

Developing policies and guidelines for data, transparency, responsible AI, and compliance\

Question 20

Which option is a use case for generative AI models?

Options:

A.

Improving network security by using intrusion detection systems

B.

Creating photorealistic images from text descriptions for digital marketing

C.

Enhancing database performance by using optimized indexing

D.

Analyzing financial data to forecast stock market trends

Question 21

A company's large language model (LLM) is experiencing hallucinations.

How can the company decrease hallucinations?

Options:

A.

Set up Agents for Amazon Bedrock to supervise the model training.

B.

Use data pre-processing and remove any data that causes hallucinations.

C.

Decrease the temperature inference parameter for the model.

D.

Use a foundation model (FM) that is trained to not hallucinate.

Question 22

A company needs to log all requests made to its Amazon Bedrock API. The company must retain the logs securely for 5 years at the lowest possible cost.

Which combination of AWS service and storage class meets these requirements? (Select TWO.)

Options:

A.

AWS CloudTrail

B.

Amazon CloudWatch

C.

AWS Audit Manager

D.

Amazon S3 Intelligent-Tiering

E.

Amazon S3 Standard

Question 23

A bank has fine-tuned a large language model (LLM) to expedite the loan approval process. During an external audit of the model, the company discovered that the model was approving loans at a faster pace for a specific demographic than for other demographics.

How should the bank fix this issue MOST cost-effectively?

Options:

A.

Include more diverse training data. Fine-tune the model again by using the new data.

B.

Use Retrieval Augmented Generation (RAG) with the fine-tuned model.

C.

Use AWS Trusted Advisor checks to eliminate bias.

D.

Pre-train a new LLM with more diverse training data.

Question 24

A company wants to use a large language model (LLM) to develop a conversational agent. The company needs to prevent the LLM from being manipulated with common prompt engineering techniques to perform undesirable actions or expose sensitive information.

Which action will reduce these risks?

Options:

A.

Create a prompt template that teaches the LLM to detect attack patterns.

B.

Increase the temperature parameter on invocation requests to the LLM.

C.

Avoid using LLMs that are not listed in Amazon SageMaker.

D.

Decrease the number of input tokens on invocations of the LLM.

Question 25

A company needs to train an ML model to classify images of different types of animals. The company has a large dataset of labeled images and will not label more data. Which type of learning should the company use to train the model?

Options:

A.

Supervised learning.

B.

Unsupervised learning.

C.

Reinforcement learning.

D.

Active learning.

Question 26

A retail store wants to predict the demand for a specific product for the next few weeks by using the Amazon SageMaker DeepAR forecasting algorithm.

Which type of data will meet this requirement?

Options:

A.

Text data

B.

Image data

C.

Time series data

D.

Binary data

Question 27

A hospital developed an AI system to provide personalized treatment recommendations for patients. The AI system must provide the rationale behind the recommendations and make the insights accessible to doctors and patients.

Which human-centered design principle does this scenario present?

Options:

A.

Explainability

B.

Privacy and security

C.

Fairness

D.

Data governance

Question 28

A company stores millions of PDF documents in an Amazon S3 bucket. The company needs to extract the text from the PDFs, generate summaries of the text, and index the summaries for fast searching.

Which combination of AWS services will meet these requirements? (Select TWO.)

Options:

A.

Amazon Translate

B.

Amazon Bedrock

C.

Amazon Transcribe

D.

Amazon Polly

E.

Amazon Textract

Question 29

Which metric measures the runtime efficiency of operating AI models?

Options:

A.

Customer satisfaction score (CSAT)

B.

Training time for each epoch

C.

Average response time

D.

Number of training instances

Question 30

An AI practitioner has built a deep learning model to classify the types of materials in images. The AI practitioner now wants to measure the model performance.

Which metric will help the AI practitioner evaluate the performance of the model?

Options:

A.

Confusion matrix

B.

Correlation matrix

C.

R2 score

D.

Mean squared error (MSE)

Question 31

A company needs to choose a model from Amazon Bedrock to use internally. The company must identify a model that generates responses in a style that the company's employees prefer.

What should the company do to meet these requirements?

Options:

A.

Evaluate the models by using built-in prompt datasets.

B.

Evaluate the models by using a human workforce and custom prompt datasets.

C.

Use public model leaderboards to identify the model.

D.

Use the model InvocationLatency runtime metrics in Amazon CloudWatch when trying models.

Question 32

A company wants to keep its foundation model (FM) relevant by using the most recent data. The company wants to implement a model training strategy that includes regular updates to the FM.

Which solution meets these requirements?

Options:

A.

Batch learning

B.

Continuous pre-training

C.

Static training

D.

Latent training

Question 33

A medical company wants to develop an AI application that can access structured patient records, extract relevant information, and generate concise summaries.

Which solution will meet these requirements?

Options:

A.

Use Amazon Comprehend Medical to extract relevant medical entities and relationships. Apply rule-based logic to structure and format summaries.

B.

Use Amazon Personalize to analyze patient engagement patterns. Integrate the output with a general purpose text summarization tool.

C.

Use Amazon Textract to convert scanned documents into digital text. Design a keyword extraction system to generate summaries.

D.

Implement Amazon Kendra to provide a searchable index for medical records. Use a template-based system to format summaries.

Question 34

A medical company deployed a disease detection model on Amazon Bedrock. To comply with privacy policies, the company wants to prevent the model from including personal patient information in its responses. The company also wants to receive notification when policy violations occur.

Which solution meets these requirements?

Options:

A.

Use Amazon Macie to scan the model's output for sensitive data and set up alerts for potential violations.

B.

Configure AWS CloudTrail to monitor the model's responses and create alerts for any detected personal information.

C.

Use Guardrails for Amazon Bedrock to filter content. Set up Amazon CloudWatch alarms for notification of policy violations.

D.

Implement Amazon SageMaker Model Monitor to detect data drift and receive alerts when model quality degrades.

Question 35

A company is building an ML model. The company collected new data and analyzed the data by creating a correlation matrix, calculating statistics, and visualizing the data.

Which stage of the ML pipeline is the company currently in?

Options:

A.

Data pre-processing

B.

Feature engineering

C.

Exploratory data analysis

D.

Hyperparameter tuning

Question 36

A bank is fine-tuning a large language model (LLM) on Amazon Bedrock to assist customers with questions about their loans. The bank wants to ensure that the model does not reveal any private customer data.

Which solution meets these requirements?

Options:

A.

Use Amazon Bedrock Guardrails.

B.

Remove personally identifiable information (PII) from the customer data before fine-tuning the LLM.

C.

Increase the Top-K parameter of the LLM.

D.

Store customer data in Amazon S3. Encrypt the data before fine-tuning the LLM.

Question 37

A media company wants to analyze viewer behavior and demographics to recommend personalized content. The company wants to deploy a customized ML model in its production environment. The company also wants to observe if the model quality drifts over time.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon Rekognition

B.

Amazon SageMaker Clarify

C.

Amazon Comprehend

D.

Amazon SageMaker Model Monitor

Question 38

A company wants to develop an educational game where users answer questions such as the following: "A jar contains six red, four green, and three yellow marbles. What is the probability of choosing a green marble from the jar?"

Which solution meets these requirements with the LEAST operational overhead?

Options:

A.

Use supervised learning to create a regression model that will predict probability.

B.

Use reinforcement learning to train a model to return the probability.

C.

Use code that will calculate probability by using simple rules and computations.

D.

Use unsupervised learning to create a model that will estimate probability density.

Question 39

A company deployed an AI/ML solution to help customer service agents respond to frequently asked questions. The questions can change over time. The company wants to give customer service agents the ability to ask questions and receive automatically generated answers to common customer questions. Which strategy will meet these requirements MOST cost-effectively?

Options:

A.

Fine-tune the model regularly.

B.

Train the model by using context data.

C.

Pre-train and benchmark the model by using context data.

D.

Use Retrieval Augmented Generation (RAG) with prompt engineering techniques.

Question 40

A company wants to develop ML applications to improve business operations and efficiency.

Select the correct ML paradigm from the following list for each use case. Each ML paradigm should be selected one or more times. (Select FOUR.)

• Supervised learning

• Unsupervised learning

Options:

Question 41

A company has installed a security camera. The company uses an ML model to evaluate the security camera footage for potential thefts. The company has discovered that the model disproportionately flags people who are members of a specific ethnic group.

Which type of bias is affecting the model output?

Options:

A.

Measurement bias

B.

Sampling bias

C.

Observer bias

D.

Confirmation bias

Question 42

A company built an AI-powered resume screening system. The company used a large dataset to train the model. The dataset contained resumes that were not representative of all demographics. Which core dimension of responsible AI does this scenario present?

Options:

A.

Fairness.

B.

Explainability.

C.

Privacy and security.

D.

Transparency.

Question 43

A company deployed a model to production. After 4 months, the model inference quality degraded. The company wants to receive a notification if the model inference quality degrades. The company also wants to ensure that the problem does not happen again.

Which solution will meet these requirements?

Options:

A.

Retrain the model. Monitor model drift by using Amazon SageMaker Clarify.

B.

Retrain the model. Monitor model drift by using Amazon SageMaker Model Monitor.

C.

Build a new model. Monitor model drift by using Amazon SageMaker Feature Store.

D.

Build a new model. Monitor model drift by using Amazon SageMaker JumpStart.

Question 44

A company is building a new generative AI chatbot. The chatbot uses an Amazon Bedrock foundation model (FM) to generate responses. During testing, the company notices that the chatbot is prone to prompt injection attacks.

What can the company do to secure the chatbot with the LEAST implementation effort?

Options:

A.

Fine-tune the FM to avoid harmful responses.

B.

Use Amazon Bedrock Guardrails content filters and denied topics.

C.

Change the FM to a more secure FM.

D.

Use chain-of-thought prompting to produce secure responses.

Question 45

A social media company wants to use a large language model (LLM) for content moderation. The company wants to evaluate the LLM outputs for bias and potential discrimination against specific groups or individuals.

Which data source should the company use to evaluate the LLM outputs with the LEAST administrative effort?

Options:

A.

User-generated content

B.

Moderation logs

C.

Content moderation guidelines

D.

Benchmark datasets

Question 46

A company wants to display the total sales for its top-selling products across various retail locations in the past 12 months.

Which AWS solution should the company use to automate the generation of graphs?

Options:

A.

Amazon Q in Amazon EC2

B.

Amazon Q Developer

C.

Amazon Q in Amazon QuickSight

D.

Amazon Q in AWS Chatbot

Question 47

Which scenario represents a practical use case for generative AI?

Options:

A.

Using an ML model to forecast product demand

B.

Employing a chatbot to provide human-like responses to customer queries in real time

C.

Using an analytics dashboard to track website traffic and user behavior

D.

Implementing a rule-based recommendation engine to suggest products to customers

Question 48

A company wants to create an application to summarize meetings by using meeting audio recordings.

Select and order the correct steps from the following list to create the application. Each step should be selected one time or not at all. (Select and order THREE.)

• Convert meeting audio recordings to meeting text files by using Amazon Polly.

• Convert meeting audio recordings to meeting text files by using Amazon Transcribe.

• Store meeting audio recordings in an Amazon S3 bucket.

• Store meeting audio recordings in an Amazon Elastic Block Store (Amazon EBS) volume.

• Summarize meeting text files by using Amazon Bedrock.

• Summarize meeting text files by using Amazon Lex.

Options:

Question 49

A company has developed an ML model to predict real estate sale prices. The company wants to deploy the model to make predictions without managing servers or infrastructure.

Which solution meets these requirements?

Options:

A.

Deploy the model on an Amazon EC2 instance.

B.

Deploy the model on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

C.

Deploy the model by using Amazon CloudFront with an Amazon S3 integration.

D.

Deploy the model by using an Amazon SageMaker AI endpoint.

Question 50

A loan company is building a generative AI-based solution to offer new applicants discounts based on specific business criteria. The company wants to build and use an AI model responsibly to minimize bias that could negatively affect some customers.

Which actions should the company take to meet these requirements? (Select TWO.)

Options:

A.

Detect imbalances or disparities in the data.

B.

Ensure that the model runs frequently.

C.

Evaluate the model's behavior so that the company can provide transparency to stakeholders.

D.

Use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) technique to ensure that the model is 100% accurate.

E.

Ensure that the model's inference time is within the accepted limits.

Question 51

A retail company wants to build an ML model to recommend products to customers. The company wants to build the model based on responsible practices. Which practice should the company apply when collecting data to decrease model bias?

Options:

A.

Use data from only customers who match the demography of the company's overall customer base.

B.

Collect data from customers who have a past purchase history.

C.

Ensure that the data is balanced and collected from a diverse group.

D.

Ensure that the data is from a publicly available dataset.

Question 52

Which type of AI model makes numeric predictions?

Options:

A.

Diffusion

B.

Regression

C.

Transformer

D.

Multi-modal

Question 53

In which stage of the generative AI model lifecycle are tests performed to examine the model's accuracy?

Options:

A.

Deployment

B.

Data selection

C.

Fine-tuning

D.

Evaluation

Page: 1 / 13
Total 177 questions